【題目】以一個(gè)等邊三角形的底邊所對(duì)應(yīng)的中線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周所得的幾何體是(

A.一個(gè)圓柱B.一個(gè)圓錐C.一個(gè)圓臺(tái)D.兩個(gè)圓錐

【答案】B

【解析】

旋轉(zhuǎn)軸的左右兩邊都是直角三角形,并且旋轉(zhuǎn)軸是直角三角形的較長(zhǎng)直角邊.

以一個(gè)等邊三角形的底邊所對(duì)應(yīng)的中線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周所得的幾何體相當(dāng)于是一個(gè)圓錐,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)天氣網(wǎng)201634晚六時(shí)通過(guò)手機(jī)發(fā)布的35通州區(qū)天氣預(yù)報(bào)的折線圖(如圖),其中上面的折線代表可能出現(xiàn)的從高氣溫,下面的折線代表可能出現(xiàn)的最低氣溫.

)指出最高氣溫與最低氣溫的相關(guān)性;

)估計(jì)在10:00時(shí)最高氣溫和最低氣溫的差;

)比較最低氣溫與最高氣溫方差的大小(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1,求曲線在點(diǎn)處的切線方程;

2,求在區(qū)間 上的最小值;

3若函數(shù)有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐,底面是邊長(zhǎng)為1的正方形,,,的中點(diǎn)

(1)求證:平面;

(2)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】健步走是一種方便而又有效的鍛煉方式,李老師每天堅(jiān)持健步走,并用計(jì)步器進(jìn)行統(tǒng)計(jì).他最近8天健步走步數(shù)的條形統(tǒng)計(jì)圖及相應(yīng)的消耗能量數(shù)據(jù)表如下:

(1)求老師這8天健步走步數(shù)的平均數(shù);

(2)從步數(shù)為16千步,17千步,18千步的6天中任選2天,設(shè)李老師這2天通過(guò)健步走消耗的能量和為,的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線與拋物線相交于點(diǎn),兩點(diǎn),設(shè)

(1)求證:為定值

(2)是否存在平行于軸的定直線被以為直徑的圓截得的弦長(zhǎng)為定值?如果存在,求出該直線方程和弦長(zhǎng),如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三個(gè)元素,分別作為一個(gè)三位數(shù)的個(gè)位數(shù),十位數(shù)和百位數(shù),記這個(gè)三位數(shù)為a,現(xiàn)將組成a的三個(gè)數(shù)字按從小到大排成的三位數(shù)記為Ia),按從大到小排成的三位數(shù)記為Da)(例如a=219,則Ia)=129,Da)=921),閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,則輸出b的值為( )

A. 792 B. 693 C. 594 D. 495

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績(jī)記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績(jī)的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適,說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱.

(1)求實(shí)數(shù)的值;

(2)若對(duì)任意的,使得有解,求實(shí)數(shù)的取值范圍;

(3)若時(shí),關(guān)于的方程有四個(gè)不等式的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案