對實數(shù)a和b,定義運算“?”:a?b=
a,a≤b
b,a>b
,設(shè)函數(shù)f(x)=x2?(x+2),x∈R,若函數(shù)y=f(x)-c的圖象與x軸恰有三個公共點,則實數(shù)c的取值范圍是( 。
A、[-1,0)
B、(0,1)
C、(-1,0)
D、(-1,0)∪[1,+∞)
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)依題意確定函數(shù)f(x)的解析式,畫出函數(shù)圖象,通過觀察確定c的范圍.
解答: 解:當(dāng)x2≤x+2時,即-1≤x≤2時,f(x)=x2
當(dāng)x2>x+2時,即x>2或x<-1,f(x)=x+2,
函數(shù)圖象如圖:,
y=f(x)-c的圖象是由函數(shù)f(x)向下平移c個單位獲得的,如圖,函數(shù)圖象與x軸恰有三個交點,
當(dāng)函數(shù)f(x)向下平移一個單位后,函數(shù)圖象與x軸恰有三個交點,
故0≤c≤1
故選B.
點評:本題主要考查了函數(shù)圖象與性質(zhì),函數(shù)圖象的平移,分段函數(shù)的應(yīng)用.注重了對數(shù)形結(jié)合的思想的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-4,+∞)上的單調(diào)增函數(shù),且對于一切實數(shù)x,不等式f(cosx-b2)≥f(sin2x-b-3)恒成立,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x3+ax在區(qū)間(-∞,1)上為減函數(shù),在(1,+∞)上為增函數(shù),則a的值為( 。
A、3
B、-3
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上任意一點,過點P作雙曲線兩漸近線的平行線,分別與兩漸近線交于M,N兩點,若|PM|•|PN|=b2,則該雙曲線的離心率為( 。
A、2
B、
2
C、
2
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
A、a∥b,a⊥α⇒a⊥b
B、a⊥α,b⊥α⇒a∥b
C、a⊥α,a⊥b⇒b∥α
D、a∥α,a⊥b⇒b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上截距相等,求切線的方程;
(2)若M(m,n)為圓C上任意一點,求
n+2
m-1
的最大值與最小值;
(3)從圓C外一點P(x,y)向圓引切線PM,M為切點,O為坐標(biāo)原點,且有|PM|=|PO|,求當(dāng)|PM|最小時的點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的菱形,且∠DAB=60°,PA=PD=
2
,PB=1,E,F(xiàn)分別是BC,PC的中點.
(Ⅰ)證明:平面ADP⊥平面DEF;
(Ⅱ)在線段AE上是否存在一點M,使二面角M-DF-E的大小為60°,若存在求出EM:MA,若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程ax+by+c=0中的a,b,c∈{0,1,2,3,4,5,6},且a,b,c互不相同,在所有這些方程表示的直線中,求不同的直線共有多少條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a=3,b=4,
(1)若sinB=
4
5
,求sinA的值;
(2)若cosC=
2
3
,求c邊的長與△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案