【題目】若集合具有以下性質:(1)且;(2)若,,則,且當時,,則稱集合為“閉集”.
(1)試判斷集合是否為“閉集”,請說明理由;
(2)設集合是“閉集”,求證:若,,則;
(3)若集合是一個“閉集”,試判斷命題“若,,則”的真假,并說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】在公差不為零的等差數(shù)列{an}中,a4=10,且a3、a6、a10成等比數(shù)列.
(1)求{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
是否存在,使得,按照某種順序成等差數(shù)列?若存在,請確定的個數(shù);若不存在,請說明理由;
求實數(shù)與正整數(shù),使得在內(nèi)恰有個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準備投入適當?shù)膹V告費對產(chǎn)品進行促銷,在一年內(nèi),預計年銷量(萬件)與廣告費(萬元)之間的函數(shù)關系為,已知生產(chǎn)此產(chǎn)品的年固定投入為萬元,每生產(chǎn)萬件此產(chǎn)品仍需要投入萬元,若年銷售額為“年生產(chǎn)成本的”與“年廣告費的”之和,而當年產(chǎn)銷量相等:
(1)試將年利潤(萬元)表示為年廣告費(萬元)的函數(shù);
(2)求當年廣告費投入多少萬元時,企業(yè)利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,過點向圓引兩條切線,,切點為,,若點的坐標為,則直線的方程為____________;若為直線上一動點,則直線經(jīng)過定點__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結構,調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):
經(jīng)計算: , , , , , , ,其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù), .
(1)若用線性回歸模型,求關于的回歸方程(結果精確到);
(2)若用非線性回歸模型求得關于的回歸方程為,且相關指數(shù)為.
(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;
(ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(shù)(結果取整數(shù)).
附:對于一組數(shù)據(jù), ,……, ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關指數(shù)為: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是圓上的動點,點是在軸上的投影,且.
(1)當在圓上運動時,求點的軌跡的方程;
(2)求過點(1,0),傾斜角為的直線被所截線段的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com