【題目】用反證法證明“若x+y≤0則x≤0或y≤0”時(shí),應(yīng)假設(shè)(
A.x>0或y>0
B.x>0且y>0
C.xy>0
D.x+y<0

【答案】B
【解析】解:用反證法證明“若x+y≤0則x≤0或y≤0”時(shí),應(yīng)先假設(shè)x>0且y>0.

故選:B.

熟記反證法的步驟,直接填空即可.反面有多種情況,需一一否定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},則A∩UB=(
A.{3,6}
B.{5}
C.{2,4}
D.{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的( )

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教師有相同的語(yǔ)文參考書(shū)3本,相同的數(shù)學(xué)參考書(shū)4本,從中取出4本贈(zèng)送給4位學(xué)生,每位學(xué)生1本,則不同的贈(zèng)送方法共有(
A.20種
B.15種
C.10種
D.4種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次體育水平測(cè)試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績(jī)的優(yōu)秀率為70%,女生成績(jī)的優(yōu)秀率為50%;乙校男生成績(jī)的優(yōu)秀率為60%,女生成績(jī)的優(yōu)秀率為40%.對(duì)于此次測(cè)試,給出下列三個(gè)結(jié)論:

①甲校學(xué)生成績(jī)的優(yōu)秀率大于乙校學(xué)生成績(jī)的優(yōu)秀率;

②甲、乙兩校所有男生成績(jī)的優(yōu)秀率大于甲、乙兩校所有女生成績(jī)的優(yōu)秀率;

③甲校學(xué)生成績(jī)的優(yōu)秀率與甲、乙兩校所有學(xué)生成績(jī)的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號(hào)是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知(1﹣x)5=a0+a1x+a2x2+a3x3+a5x5 , 則(a0+a2+a4)(a1+a3+a5)的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】不存在函數(shù)f(x)滿足,對(duì)任意x∈R都有(
A.f(|x+1|)=x2+2x
B.f(cos2x)=cosx
C.f(sinx)=cos2x
D.f(cosx)=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=αx﹣2﹣1(α>0且α≠1)的圖象恒過(guò)的點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若BA,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案