【題目】(理)在長方體中,,,,點在棱上移動.
(1)探求多長時,直線與平面成角;
(2)點移動為棱中點時,求點到平面的距離.
【答案】(1) (2)
【解析】
(1)法一:先找出直線與平面所成角,再根據(jù)直角三角形解;法二:建立空間直角坐標(biāo)系,先求平面法向量,再利用向量數(shù)量積求向量夾角,最后解方程得結(jié)果;
(2)建立空間直角坐標(biāo)系,先求平面法向量,再利用向量數(shù)量積求點面距.
解:(1)法一:長方體中,因為點在棱上移動,
所以平面,從而為直線與平面所成的平面角,
中,.
法二:以為坐標(biāo)原點,射線依次為軸軸,建立空間直角坐標(biāo)系,則點,平面的法向量為,設(shè),得,由,得,故
(2)以為坐標(biāo)原點,射線依次為軸,建立空間直角坐標(biāo)系,則點,, ,
從而,,
設(shè)平面的法向量為,由
令,所以點到平面的距離為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點按坐標(biāo)變換得到曲線,以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點的極坐標(biāo)為.
(1)求曲線的極坐標(biāo)方程;
(2)若過點且傾斜角為的直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認(rèn)為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10日,每天新增疑似病例不超過7人”.過去10日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下:
甲地:總體平均數(shù)為3,中位數(shù)為4;
乙地:總體平均數(shù)為1,總體方差大于0;
丙地:總體平均數(shù)為2,總體方差為3;
丁地:中位數(shù)為2,眾數(shù)為3;
則甲、乙、兩、丁四地中,一定沒有發(fā)生大規(guī)模群體感染的是( )
A.甲地B.乙地C.丙地D.丁地
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左、右焦點分別是,點,若的內(nèi)切圓的半徑與外接圓的半徑的比是.
(1)求橢圓C的方程;
(2)點M是橢圓C的左頂點,P、Q是橢圓上異于左、右頂點的兩點,設(shè)直線MP、MQ的斜率分別為、,若,試問直線PQ是否過定點?若過定點,求該定點坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,,為正三角形,且.
(1)證明:直線平面;
(2)若四棱錐的體積為,是線段的中點,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校決定為本校上學(xué)所需時間不少于30分鐘的學(xué)生提供校車接送服務(wù).為了解學(xué)生上學(xué)所需時間,從全校600名學(xué)生中抽取50人統(tǒng)計上學(xué)所需時間(單位:分鐘),將600人隨機編號為001,002,…,600,抽取的50名學(xué)生上學(xué)所需時間均不超過60分鐘,將上學(xué)所需時間按如下方式分成六組,第一組上學(xué)所需時間在[0,10),第二組上學(xué)所需時間在[10,20)…,第六組上學(xué)所需時間在[50,60],得到各組人數(shù)的頻率分布直方圖,如下圖
(1)若抽取的50個樣本是用系統(tǒng)抽樣的方法得到,且第一個抽取的號碼為006,則第五個抽取的號碼是多少?
(2)若從50個樣本中屬于第四組和第六組的所有人中隨機抽取2人,設(shè)他們上學(xué)所需時間分別為a、b,求滿足的事件的概率;
(3)設(shè)學(xué)校配備的校車每輛可搭載40名學(xué)生,請根據(jù)抽樣的結(jié)果估計全校應(yīng)有多少輛這樣的校車?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在上,以為切點的的切線的斜率為,過外一點(不在軸上)作的切線、,點、為切點,作平行于的切線(切點為),點、分別是與、的交點(如圖):
(1)用、的縱坐標(biāo)、表示直線的斜率;
(2)若直線與的交點為,證明是的中點;
(3)設(shè)三角形面積為,若將由過外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做“切線三角形”,如,再由、作“切線三角形”,并依這樣的方法不斷作切線三角形……,試?yán)?/span>“切線三角形”的面積和計算由拋物線及所圍成的陰影部分的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com