【題目】如圖,在四棱柱中,底面為等腰梯形,.平面平面,四邊形為菱形,.

1)求證:;

2)求與平面所成角的正弦值.

【答案】1)證明見(jiàn)解析(2

【解析】

方法一(幾何法):(1)通過(guò)證明,證得平面,由此證得;(2)作出直線與平面所成角,利用兩角差的正切公式,求得線面角的正切值,再轉(zhuǎn)化為正弦值.

方法二(向量法):(1)取中點(diǎn),連接,證得底面,由此以為原點(diǎn)建立空間直角坐標(biāo)系,通過(guò)計(jì)算,證得.2)由(1)計(jì)算出直線的方向向量和平面的法向量,由此計(jì)算出與平面所成角的正弦值.

方法一、

1)連接、,取中點(diǎn),連接、.

∵等腰梯形中,,.

,.

又∵在菱形中,,∴.

又平面平面,交線為,∴底面.

,,

∴四邊形為平行四邊形,.

底面,∴

又∵,相交,∴平面,

.

2)取中點(diǎn),連接,,,,相交于點(diǎn),連接,顯然平面平面.

平面,∴平面平面,∴平面平面,交線為,∴與平面所成角.

,

,∴由解得.∴與平面所成角的正弦值為.

方法二、

1)取中點(diǎn),連接.

∵四邊形為菱形,,∴.

又平面平面,交線為,∴底面.

為原點(diǎn)如圖建立空間直角坐標(biāo)系,

,,.

,

,∴.

2,設(shè)平面的法向量為,則,取,.

與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第二屆中國(guó)國(guó)際進(jìn)口博覽會(huì)于2019115日至10日在上海國(guó)家會(huì)展中心舉行.它是中國(guó)政府堅(jiān)定支持貿(mào)易自由化和經(jīng)濟(jì)全球化,主動(dòng)向世界開(kāi)放市場(chǎng)的重要舉措,有利于促進(jìn)世界各國(guó)加強(qiáng)經(jīng)貿(mào)交流合作,促進(jìn)全球貿(mào)易和世界經(jīng)濟(jì)增長(zhǎng),推動(dòng)開(kāi)放世界經(jīng)濟(jì)發(fā)展.某機(jī)構(gòu)為了解人們對(duì)“進(jìn)博會(huì)”的關(guān)注度是否與性別有關(guān),隨機(jī)抽取了100名不同性別的人員(男、女各50名)進(jìn)行問(wèn)卷調(diào)查,并得到如下列聯(lián)表:

男性

女性

合計(jì)

關(guān)注度極高

35

14

49

關(guān)注度一般

15

36

51

合計(jì)

50

50

100

1)根據(jù)列聯(lián)表,能否有99.9%的把握認(rèn)為對(duì)“進(jìn)博會(huì)”的關(guān)注度與性別有關(guān);

2)若從關(guān)注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再?gòu)?/span>7人中任意選取2人談?wù)勱P(guān)注“進(jìn)博會(huì)”的原因,求這2人中至少有一名女性的概率.

附:.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(理)在長(zhǎng)方體中,,,點(diǎn)在棱上移動(dòng).

1)探求多長(zhǎng)時(shí),直線與平面角;

2)點(diǎn)移動(dòng)為棱中點(diǎn)時(shí),求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動(dòng)點(diǎn)P滿足.又曲線上的點(diǎn)A、B滿足.

1)求曲線的方程;

2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

3)求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓),過(guò)原點(diǎn)的兩條直線分別與交于點(diǎn)、,得到平行四邊形.

1)若,,且為正方形,求該正方形的面積.

2)若直線的方程為,關(guān)于軸對(duì)稱,上任意一點(diǎn)的距離分別為,證明:.

3)當(dāng)為菱形,且圓內(nèi)切于菱形時(shí),求,滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前n項(xiàng)組成集合,從集合中任取個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),例如:對(duì)于數(shù)列,當(dāng)時(shí),時(shí),;

1)若集合,求當(dāng)時(shí),的值;

2)若集合,證明:時(shí)集合時(shí)集合(為了以示區(qū)別,用表示)有關(guān)系式,其中;

3)對(duì)于(2)中集合.定義,求(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,如圖放置的邊長(zhǎng)為的正方形沿軸滾動(dòng)(無(wú)滑動(dòng)滾動(dòng)),點(diǎn)恰好經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)頂點(diǎn)的軌跡方程是,則對(duì)函數(shù)的判斷正確的是( )

A.函數(shù)是奇函數(shù)B.對(duì)任意的,都有

C.函數(shù)的值域?yàn)?/span>D.函數(shù)在區(qū)間上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人打算做一個(gè)正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充,已知金字塔的每一條棱和邊都相等.

(1)求證:直線AC垂直于直線SD;

(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個(gè)金字塔內(nèi)部填滿?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與它到直線的距離的比值為,設(shè)動(dòng)點(diǎn)形成的軌跡為曲線..

1)求曲線的方程;

2)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),過(guò)點(diǎn)作,垂足為,過(guò)點(diǎn)作,垂足為,的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案