【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與它到直線的距離的比值為,設(shè)動(dòng)點(diǎn)形成的軌跡為曲線..

1)求曲線的方程;

2)過點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)作,垂足為,過點(diǎn)作,垂足為,的取值范圍.

【答案】(1)(2)

【解析】

1)設(shè)出點(diǎn),根據(jù)圓錐曲線的統(tǒng)一定義可得出曲線的方程;

2)要求的取值范圍,通過統(tǒng)一定義可轉(zhuǎn)化求的取值范圍,根據(jù)圖形又可以轉(zhuǎn)化為求的取值范圍,運(yùn)用韋達(dá)定理進(jìn)行減元,構(gòu)造函數(shù)求出結(jié)果。

:1)設(shè),

由題意,,

整理化簡(jiǎn)得,

故曲線的方程為,

2當(dāng)直線的斜率為時(shí),

當(dāng)直線的斜率不為時(shí),

設(shè)直線的方程為

消去,

化簡(jiǎn)整理得,,

顯然,

由韋達(dá)定理可得:

設(shè)

由①②消去,可得

(。┊(dāng)時(shí),

(ⅱ)當(dāng)時(shí),,

解得

綜合(ⅰ)(ⅱ)得:

綜上得:。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱中,底面為等腰梯形,,.平面平面,四邊形為菱形,.

1)求證:

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角AB,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓,設(shè)是橢圓上任一點(diǎn),從原點(diǎn)向圓作兩條切線,切點(diǎn)分別為

(1)若直線互相垂直,且點(diǎn)在第一象限內(nèi),求點(diǎn)的坐標(biāo);

(2)若直線的斜率都存在,并記為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點(diǎn),過點(diǎn)的直線交橢圓于,兩點(diǎn),且的周長(zhǎng)為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),試判斷在軸上是否存在點(diǎn),使得是以為底邊的等腰三角形若存在,求點(diǎn)橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面,,,,分別是的中點(diǎn).

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

,使得不等式成立,試求實(shí)數(shù)的取值范圍;

)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,是等邊三角形,是直角三角形,中點(diǎn).

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)個(gè)正數(shù)依次圍成一個(gè)圓圈,其中是公差為的等差數(shù)列,而是公比為的等比數(shù)列.

1)若,求數(shù)列的所有項(xiàng)的和

2)若,求的最大值;

3)當(dāng)時(shí)是否存在正整數(shù),滿足?若存在,求出值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案