7.已知點F1,F(xiàn)2分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點,P為雙曲線左支上的任意一點,且|PF2|=2|PF1|,若△PF1F2為等腰三角形,則該雙曲線的離心率為( 。
A.3B.$\sqrt{2}$C.2D.$\frac{3}{2}$

分析 運用雙曲線的定義和等腰三角形的定義,由離心率公式,計算即可得到,注意離心率的范圍.

解答 解:P為雙曲線左支上的一點,
則由雙曲線的定義可得,|PF2|-|PF1|=2a,
由|PF2|=2|PF1|,則|PF2|=4a,|PF1|=2a,
由△PF1F2為等腰三角形,則|PF2|=|F1F2|
或|F1F2|=|PF1|,
即有4a=2c或2c=2a,
即有e=2(1舍去).
故選C.

點評 本題考查雙曲線的定義和性質(zhì),考查離心率的求法,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知2x=7y=196,則 $\frac{1}{x}$+$\frac{1}{y}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
 (1)求實數(shù)a的值;
  (2)設(shè)x1,x2(x1<x2) 是函數(shù)g(x)的兩個極值點,記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,
①t的取值范圍;
②求g(x1)-g(x2) 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若集合A={2,3},B={x|x2-5x+6=0},則A∩B=(  )
A.{2,3}B.{(2,3)}C.{x=2,x=3}D.2,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.一塊邊長為10cm的正方形鐵塊按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器.
(1)試把容器的容積V表示為x的函數(shù)
(2)若x=6,求圖2的主視圖的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在等差數(shù)列{an}中,a2,a4,a10為一等比數(shù)列的相鄰三項,則該等比數(shù)列的公比為1或3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=sin2x-$\frac{\sqrt{3}}{2}$(x∈[0,π]),g(x)=x+3,點P(x1,y1),Q(x2,y2)分別位于f(x),g(x)的圖象上,則(x1-x22+(y1-y22的最小值為( 。
A.$\frac{(π+18)^{2}}{72}$B.$\frac{\sqrt{2}π}{12}$C.$\frac{(π+18)^{2}}{12}$D.$\frac{(π-3\sqrt{3}+15)^{2}}{72}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.圓x2+y2+2x+4y-3=0上到直線x+y+1=0的距離等于3$\sqrt{2}$的點有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知a∈[-2,2],不等式x2+(a-4)x+4-2a>0恒成立,則x的取值范圍為(-∞,0)∪(4,+∞).

查看答案和解析>>

同步練習冊答案