7.已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等實數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[1,2]時,求f(x)的值域;
(3)若F(x)=f(x)-f(-x)+$\frac{m}{{x}^{2}}$,試判斷F(x)的奇偶性,并說明理由.

分析 (1)由f(2)=0,且f(x)=x有兩個相等的實數(shù)根,求出a、b的值,從而得f(x)的解析式;
(2)根據(jù)(1)所求的解析式,判斷x∈[1,2]上的單調(diào)性,然后求解即可;
(3)根據(jù)奇偶函數(shù)的定義進(jìn)行判斷和證明.

解答 解:(1)∵f(2)=0,∴4a+2b=0①;
又方程f(x)=x有兩個相等的實數(shù)根,
即ax2+(b-1)x=0有兩個相等的實數(shù)根,
∴(b-1)2=0②;
由①②可得,a=-$\frac{1}{2}$,b=1,
∴f(x)=-$\frac{1}{2}$x2+x;
(2)由(1)知f(x)=-$\frac{1}{2}$(x-1)2+$\frac{1}{2}$,
顯然函數(shù)f(x)在[1,2]上是減函數(shù),
∴x=1時,ymax=$\frac{1}{2}$;x=2時,ymin=0.
∴x∈[1,2]時,函數(shù)的值域是[0,$\frac{1}{2}$];
(3)∵F(x)=f(x)-f(-x)+$\frac{m}{{x}^{2}}$=2x+$\frac{m}{{x}^{2}}$,
m=0時,F(xiàn)(x)=2x,∵F(-x)=2(-x)=-2x=-F(x),
∴F(x)是奇函數(shù),
m≠0時,F(xiàn)(x)是非奇非偶函數(shù),不妨取x=1,
得F(-1)=-2+m≠-2-m=-(2+m)=-F(1),
即存在x0=1使得F(-x0)≠-F(x0),
故F(x)是非奇非偶函數(shù).

點評 本題主要考查函數(shù)的奇偶性和二次函數(shù)在閉區(qū)間上的值域問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sin(α+$\frac{π}{3}$)+cos(α-$\frac{π}{2}$)=-$\frac{4\sqrt{3}}{5}$,-$\frac{π}{2}$<α<0,則cos(α+$\frac{2π}{3}$)等于( 。
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個空間幾何體的三視圖如右圖,其中正視圖是邊長為2的正三角形,俯視圖是邊長分別為1,2的矩形,則該幾何體的側(cè)面積為4+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知A={x|-2≤x<4},B={x|x>a},若A∩B≠∅,且A∩B≠A,則實數(shù)a的取值集合為[-2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若一系列函數(shù)的解析式相同,值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,那么y=x2,值域為{1,9}的“同族函數(shù)”共有9個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,若b,a,c成等差數(shù)列,且sin2A=sinBsinC,則△ABC的形狀為(  )
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{\sqrt{2-{{(\frac{1}{2})}^x}}(x<0)}\\{lg(x+1)(x≥0)}\end{array}}$,若f(x0)<1,則x0的取值范圍是( 。
A.(-1,9)B.[-1,9)C.[0,9)D.(0,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=lg(x-1)+$\frac{3}{x-2}$的定義域是(1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={a,b},B={0,1},則從A到B的映射共有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

同步練習(xí)冊答案