【題目】團(tuán)體購(gòu)買(mǎi)公園門(mén)票,票價(jià)如下表:

購(gòu)票人數(shù)

1~50

51~100

100以上

門(mén)票價(jià)格

13元/人

11元/人

9元/人

現(xiàn)某單位要組織其市場(chǎng)部和生產(chǎn)部的員工游覽該公園,這兩個(gè)部門(mén)人數(shù)分別為a和b,若按部門(mén)作為團(tuán)體,選擇兩個(gè)不同的時(shí)間分別購(gòu)票游覽公園,則共需支付門(mén)票費(fèi)為1290元;若兩個(gè)部門(mén)合在一起作為一個(gè)團(tuán)體,同一時(shí)間購(gòu)票游覽公園,則需支付門(mén)票費(fèi)為990元,那么這兩個(gè)部門(mén)的人數(shù)____;____.

【答案】70 40

【解析】

根據(jù)990不能被13整除,得兩個(gè)部門(mén)人數(shù)之和:a+b≥51,然后結(jié)合門(mén)票價(jià)格和人數(shù)之間的關(guān)系,建立方程組進(jìn)行求解即可.

∵990不能被13整除,∴兩個(gè)部門(mén)人數(shù)之和:a+b≥51,

(1)若51≤a+b≤100,則11 (a+b)=990得:a+b=90,①

由共需支付門(mén)票費(fèi)為1290元可知,11a+13b=1290 ②

解①②得:b=150,a=﹣60,不符合題意.

(2)若a+b≥100,則9 (a+b)=990,得 a+b=110 ③

由共需支付門(mén)票費(fèi)為1290元可知,1≤a≤50,51≤b≤100,

得11a+13b=1290 ④,

解③④得:a=70人,b=40人,

故答案為:70,40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),在軸截得的弦長(zhǎng)為2

1)求動(dòng)圓圓心的軌跡的方程;

2)若為軌跡上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的兩條切線分別交軸于兩點(diǎn),求面積的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,梯形與平行四邊形所在平面互相垂直, ,,,.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)判斷線段上是否存在點(diǎn),使得平面平面?若存在,求 出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校在平面圖為矩形的操場(chǎng)ABCD內(nèi)進(jìn)行體操表演,其中AB40BC15OAB上一點(diǎn),且BO10,線段OC、OD、MN為表演隊(duì)列所在位置(M、N分別在線段OD、OC上),OCD內(nèi)的點(diǎn)P為領(lǐng)隊(duì)位置,且POC、OD的距離分別為、,記OMd,我們知道當(dāng)OMN面積最小時(shí)觀賞效果最好.

1)當(dāng)d為何值時(shí),P為隊(duì)列MN的中點(diǎn);

2)怎樣安排M的位置才能使觀賞效果最好?求出此時(shí)OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.

(1)求的標(biāo)準(zhǔn)方程;

(2)是否存在過(guò)點(diǎn)的直線,與交點(diǎn)分別是,使得?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分別是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的左右兩支分別交于兩點(diǎn).若為等邊三角形,則的面積為(

A. 8 B. C. D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)求使方程存在兩個(gè)實(shí)數(shù)解時(shí),的取值范圍;

2)設(shè),函數(shù),.若對(duì)任意,總存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的對(duì)稱軸方程;

(II)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,c=4,且,求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案