【題目】已知橢圓,為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線(xiàn)的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.

(1)求的標(biāo)準(zhǔn)方程;

(2)是否存在過(guò)點(diǎn)的直線(xiàn),與交點(diǎn)分別是,使得?如果存在,求出直線(xiàn)的方程;如果不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)

【解析】分析:(1)由題設(shè)有,再根據(jù)可得的值,從而得到橢圓的標(biāo)準(zhǔn)方程.

(2)因?yàn)?/span>,故,設(shè)直線(xiàn)方程為,分別聯(lián)立直線(xiàn)與橢圓、直線(xiàn)與拋物線(xiàn)的方程,消去后利用韋達(dá)定理用表示,解出后即得直線(xiàn)方程.

詳解:(1)依題意可知,即,

由右頂點(diǎn)為,解得,所以的標(biāo)準(zhǔn)方程為.

(2)依題意可知的方程為,假設(shè)存在符合題意的直線(xiàn),

設(shè)直線(xiàn)方程為,

聯(lián)立方程組,得

由韋達(dá)定理得,則,

聯(lián)立方程組,得,由韋達(dá)定理得,所以,

,則,即,解得,

所以存在符合題意的直線(xiàn)方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系, 曲線(xiàn)的參數(shù)方程為為參數(shù)) ;在以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中, 曲線(xiàn)的極坐標(biāo)參數(shù)方程為.

1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;

2)若射線(xiàn)與曲線(xiàn),的交點(diǎn)分別為 (異于原點(diǎn)). 當(dāng)斜率時(shí), 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),記在區(qū)間的最大值為,最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)的零點(diǎn),.

(1)求實(shí)數(shù)的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題中錯(cuò)誤的是(

A.樣本頻率分布直方圖中的小矩形的面積就是對(duì)應(yīng)組的頻率

B.回歸直線(xiàn)過(guò)樣本點(diǎn)的中心

C.若樣本的平均數(shù)是2,方差是2,則數(shù)據(jù)的平均數(shù)是4,方差是4

D.拋擲一顆質(zhì)地均勻的骰子,事件“向上點(diǎn)數(shù)不大于3”和事件“向上點(diǎn)數(shù)不小于4”是對(duì)立事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄭一號(hào)宇宙飛船返回艙順利到達(dá)地球后,為了及時(shí)將航天員救出,地面指揮中心的在返回艙預(yù)計(jì)到達(dá)的區(qū)域安排了同一條直線(xiàn)上的三個(gè)救援中心(記為).當(dāng)返回艙距地面1萬(wàn)米的點(diǎn)的時(shí)(假定以后垂直下落,并在點(diǎn)著陸),救援中心測(cè)得飛船位于其南偏東60°方向,仰角為60°,救援中心測(cè)得飛船位于其南偏西30°方向,仰角為30°救援中心測(cè)得著陸點(diǎn)位于其正東方向.

1)求兩救援中心間的距離;

2救援中心與著陸點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)的方程為

1)當(dāng)時(shí),求直線(xiàn)與坐標(biāo)軸圍成的三角形的面積;

2)證明:不論取何值,直線(xiàn)恒過(guò)第四象限.

3)當(dāng)時(shí),求直線(xiàn)上的動(dòng)點(diǎn)到定點(diǎn),距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)三頂點(diǎn)坐標(biāo)分別是,

1)求ABC邊的距離d;

2)求證AB邊上任意一點(diǎn)P到直線(xiàn)AC,BC的距離之和等于d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案