【題目】某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為.

(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.

(2)假設不合格的產(chǎn)品均可進行返工修復為合格品,以(1)中確定的作為的值.

①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元。若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?

②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.

【答案】(1) (2) ①生產(chǎn)線上挽回的損失較多. ②見解析

【解析】

(1)由題意得到關于的不等式,求解不等式得到的取值范圍即可確定其最小值;

(2).由題意利用二項分布的期望公式和數(shù)學期望的性質(zhì)給出結論即可;

.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.

1)設從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設從,生產(chǎn)線上抽到合格品分別為事件,則,互為獨立事件

由已知有

解得,則的最小值

2)由(1)知生產(chǎn)線的合格率分別為,即不合格率分別為.

①設從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,

則有,,所以生產(chǎn)線上挽回損失的平均數(shù)分別為:

,

所以生產(chǎn)線上挽回的損失較多.

②由已知得的可能取值為,,用樣本估計總體,則有

,

所以的分布列為

所以(元)

故估算估算該廠產(chǎn)量件時利潤的期望值為(元)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

1)分別寫出曲線和曲線的極坐標方程;

2P為曲線上的任意一點,過P向曲線引兩條切線PAPB,當最大時,求P點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解學生對消防安全知識的掌握情況,開展了網(wǎng)上消防安全知識有獎競賽活動,并對參加活動的男生、女生各隨機抽取20人,統(tǒng)計答題成績,分別制成如下頻率分布直方圖和莖葉圖:

1)把成績在80分以上(含80分)的同學稱為“安全通”.根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否有95%的把握認為是否是“安全通”與性別有關

男生

女生

合計

安全通

非安全通

合計

2)以樣本的頻率估計總體的概率,現(xiàn)從該校隨機抽取22女,設其中“安全通”的人數(shù)為,求的分布列與數(shù)學期望.

附:參考公式,其中.

參考數(shù)據(jù):

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的極值;

(2)若函數(shù)有兩個零點,求的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某居民區(qū)有一個銀行網(wǎng)點(以下簡稱“網(wǎng)點”),網(wǎng)點開設了若干個服務窗口,每個窗口可以辦理的業(yè)務都相同,每工作日開始辦理業(yè)務的時間是8點30分,8點30分之前為等待時段.假設每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率都相等,且每位儲戶是否在該時段到網(wǎng)點相互獨立.根據(jù)歷史數(shù)據(jù),統(tǒng)計了各工作日在等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù),得到如圖所示的頻率分布直方圖:

(1)估計每工作日等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)的平均值;

(2)假設網(wǎng)點共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率;

②儲戶都是按照進入網(wǎng)點的先后順序,在等候人數(shù)最少的服務窗口排隊辦理業(yè)務.記“每工作日上午8點30分時網(wǎng)點每個服務窗口的排隊人數(shù)(包括正在辦理業(yè)務的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點至少需開設多少個服務窗口?

參考數(shù)據(jù):;;

;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)、、,如果存在實數(shù)使得,那么稱、的生成函數(shù).

(1) 下面給出兩組函數(shù), 是否分別為、的生成函數(shù)?并說明理由;

第一組: , ,

第二組: , , ;

(2) 設, , ,生成函數(shù).若不等式上有解,求實數(shù)的取值范圍;

(3) 設, ,取,生成函數(shù)圖像的最低點坐標為.若對于任意正實數(shù),且,試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)對任意的,恒成立,請求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在P地正西方向8kmA處和正東方向1kmB處各有一條正北方向的公路ACBD,現(xiàn)計劃在ACBD路邊各修建一個物流中心EF,為緩解交通壓力,決定修建兩條互相垂直的公路PEPF,設

為減少對周邊區(qū)域的影響,試確定E,F的位置,使的面積之和最;

為節(jié)省建設成本,求使的值最小時AEBF的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (是自然對數(shù)的底數(shù))

(1)求證:

(2)若不等式上恒成立,求正數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案