【題目】已知橢圓上的點到它的兩個焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過這兩個焦點,點, 分別是橢圓的左、右頂點.

)求圓和橢圓的方程.

)已知, 分別是橢圓和圓上的動點( 位于軸兩側(cè)),且直線軸平行,直線, 分別與軸交于點 .求證: 為定值.

【答案】; ;()見解析.

【解析】試題分析:

1根據(jù)橢圓定義知,又,因此易求得,得橢圓方程,從而也得到圓的方程;

2)設(shè)出, ,分別代入橢圓方程和圓的方程得到兩個關(guān)系式,寫出直線AP的方程,求出M點坐標,同理寫出BP方程,求出N點坐標,再求得向量,并計算數(shù)量積,結(jié)果為0,可得

試題解析:

)依題意,得, ,

∴圓方程,橢圓方程

)設(shè) ,

, ,

方程,令時, ,

方程為,令,

, ,

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是(
A.若a,b∈R,且a+b>4,則a,b至少有一個大于2
B.若p是q的充分不必要條件,則¬p是¬q的必要不充分條件
C.若命題p:“ >0”,則¬p:“ ≤0”
D.△ABC中,A是最大角,則sin2A>sin2B+sin2C是△ABC為鈍角三角形的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在實數(shù)集上的函數(shù)滿足,的導函數(shù)則不等式的解集為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,A,B,C三點滿足。

(1)求證:A,B,C三點共線;

(2)若A(1,cosx),B1+sinx,cosx),且x∈[0, ],函數(shù)f(x)=2m+||+m2的最小值為5,求實數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太原五中是一所有著百年歷史的名校,圖1是某一階段來我校參觀學習的外校人數(shù)統(tǒng)計莖葉圖,第1次到第14次參觀學習人數(shù)依次記為A1 , A2 , …,A14 , 圖2是統(tǒng)計莖葉圖中人數(shù)在一定范圍內(nèi)的一個算法流程圖,那么算法流程圖輸出的結(jié)果是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足: ,anan+1<0(n≥1),數(shù)列{bn}滿足:bn=an+12﹣an2(n≥1).
(1)求數(shù)列{an},{bn}的通項公式
(2)證明:數(shù)列{bn}中的任意三項不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,側(cè)面ABB1A1為菱形,∠DAB=∠DAA1

(1)求證:A1B⊥AD;
(2)若AD=AB=2BC,∠A1AB=60°,點D在平面ABB1A1上的射影恰為線段A1B的中點,求平面DCC1D1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】貴陽與凱里兩地相距約200千米,一輛貨車從貴陽勻速行駛到凱里,規(guī)定速度不得超過100千米時,已知貨車每小時的運輸成本以元為單位由可變部分和固定部分組成:可變部分與速度千米的平方成正比,比例系數(shù)為;固定部分為64元.

把全程運輸成本表示為速度千米的函數(shù),并指出這個函數(shù)的定義域;

為了使全程運輸成本最小,貨車應以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關(guān),孝感市黃陂路高中數(shù)學興趣小組為了驗證這個結(jié)論,從興趣小組中抽取50名同學(男30女20),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)

1)能否據(jù)此判斷有的把握認為視覺和空間能力與性別有關(guān)

2)以上列聯(lián)表中女生選做幾何題的頻率作為概率,從該校1500名女生中隨機選6名女生,記6名女生選做幾何題的人數(shù)為,的數(shù)學期望和方差.

附表

參考公式 其中.

查看答案和解析>>

同步練習冊答案