在正方體ABCD-A1B1C1D1中,M,N分別為棱AA1和BB1的中點,若θ為直線CM與D1N所成的角,則cosθ=


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:取C1C的中點P,連接A1P,將MC平移到A1P,根據(jù)異面直線所成角的定義可知∠A1OD1是異面直線CM與D1N所成的角,在三角形A1OD1中利用余弦定理求出此角的余弦值即可.
解答:解:取C1C的中點P,連接A1P
∵A1MCP,∴四邊形A1MCP是平行四邊形
∴A1P∥MC,則∠A1OD1是異面直線CM與D1N所成的角
設邊長為2,則MC=3,D1O=A1O=
cos∠A1OD1=cosθ=
故選D.
點評:本小題主要考查異面直線所成的角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交AA′于E,交CC′于F,則
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E在底面ABCD內的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上結論正確的為
①③④
.(寫出所有正確結論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點,則二面角E-AB-C的大小為
45°
45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點. 
(1)若M為BB′的中點,證明:平面EMF∥平面ABCD.
(2)求異面直線EF與AD′所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A′B′C′D′中,過對角線BD′的一個平面交棱AA′于E,交棱CC′于F,則:
①四邊形BFD′E一定是平行四邊形;
②四邊形BFD′E有可能是正方形;
③四邊形BFD′E有可能是菱形;
④四邊形BFD′E有可能垂直于平面BB′D.
其中所有正確結論的序號是
 

查看答案和解析>>

同步練習冊答案