【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCDPD=DC,EPC的中點,作EFPBPB于點F

(Ⅰ)證明 PA//平面EDB;

(Ⅱ)證明PB⊥平面EFD.

【答案】(Ⅰ)詳見解析;(Ⅱ)詳見解析.

【解析】

I)連結(jié),.連結(jié),通過中位線證明,由此證得平面.(2)先證得平面,由此證得,而,故平面,由此證得,結(jié)合,可證得平面.

證明:(Ⅰ)連結(jié),.連結(jié).∵底面是正方形,∴點的中點.在△中,是中位線,∴//.而平面,

平面,所以,//平面

(Ⅱ)∵⊥底面,且底面,∴.

∵底面是正方形,有,,平面

平面,∴⊥平面.而平面,∴.

又∵,的中點,∴,

平面,平面.∴⊥平面.而平面

.又,且,平面,

平面,所以⊥平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)在點處的切線.

)求的解析式.

)求證:

)設(shè),其中.若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求證:AC⊥A1B;

(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為 ,其范圍為 ,分別有五個級別: 暢通; 基本暢通; 輕度擁堵; 中度擁堵; 嚴重擁堵.晚高峰時段 ,從某市交通指揮中心選取了市區(qū) 個交通路段,依據(jù)其交通擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示.

(Ⅰ)求出輕度擁堵,中度擁堵,嚴重擁堵路段各有多少個;

(Ⅱ)用分層抽樣的方法從交通指數(shù)在 , 的路段中共抽取個路段,求依次抽取的三個級別路段的個數(shù);

(Ⅲ)從(Ⅱ)中抽取的個路段中任取個,求至少個路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中,為自然對數(shù)的底數(shù)

1討論的單調(diào)性;

2證明:當時,;

3確定的所有可能取值,使得區(qū)間內(nèi)恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組,后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求成績落在上的頻率,并補全這個頻率分布直方圖;

(Ⅱ)估計這次考試的及格率(60分及以上為及格)和平均分;

(Ⅲ)為調(diào)查某項指標,從成績在60~80分,這兩分數(shù)段組的學(xué)生中按分層抽樣的方法抽取6人,再從這6人中選2人進行對比,求選出的這2名學(xué)生來自同一分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù)。乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中經(jīng)X表示。

1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差

2)如果X=9,分別從甲、乙兩組中隨機選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出AB∥平面MNP的圖形的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案