【題目】已知
(1)若a=1,且f(x)≥m在(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)時(shí),若x=0不是f(x)的極值點(diǎn),求實(shí)數(shù)a的取值.
【答案】(1)(2)
【解析】
(1)由在上恒成立,即先求在上的最小值,利用導(dǎo)函數(shù)判斷的單調(diào)性,即可求得的范圍,進(jìn)而求解;
(2)先求導(dǎo)可得,將代入,若不是的極值點(diǎn),即使得是的非變號(hào)零點(diǎn),利用導(dǎo)函數(shù)分別討論當(dāng)與時(shí)與0的關(guān)系,進(jìn)而求解.
解:(1)由題,當(dāng)時(shí),,
所以,
設(shè),
所以恒成立,
所以在上為增函數(shù),
所以,
又,
所以恒成立,所以在上為增函數(shù),
所以,所以
(2),
令,則,
設(shè),
則,
所以在上遞增,且,
①當(dāng)時(shí),,
所以當(dāng)時(shí),;當(dāng)時(shí),,
即當(dāng)時(shí),;當(dāng)時(shí),,
所以在上遞減,在上遞增,
所以,
所以在上遞增,
所以不是的極值點(diǎn),
所以時(shí),滿足條件;
②當(dāng)時(shí),,
又因?yàn)?/span>在上遞增,
所以,使得,
所以當(dāng)時(shí),,即,
所以在上遞增,
又,
所以當(dāng)時(shí),;當(dāng)時(shí),,
所以是的極小值點(diǎn),不合題意,
綜上,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上存在極大值,求的取值范圍;
(2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對(duì)于函數(shù),若存在,使成立,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市實(shí)施了機(jī)動(dòng)車(chē)尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
(Ⅰ)請(qǐng)估計(jì)該市公眾對(duì)“車(chē)輛限行”的贊成率和被調(diào)查者的年齡平均值;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記被選4人中不贊成“車(chē)輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅲ)若在這50名被調(diào)查者中隨機(jī)發(fā)出20份的調(diào)查問(wèn)卷,記為所發(fā)到的20人中贊成“車(chē)輛限行”的人數(shù),求使概率取得最大值的整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程有實(shí)數(shù)根,則稱(chēng)為函數(shù)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)().
(1)若,求證:有唯一不動(dòng)點(diǎn);
(2)若有兩個(gè)不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司A產(chǎn)品生產(chǎn)的投入成本x(單位:萬(wàn)元)與產(chǎn)品銷(xiāo)售收入y(單位:十萬(wàn)元)存在較好的線性關(guān)系,下表記錄了該公司最近8次該產(chǎn)品的相關(guān)數(shù)據(jù),且根據(jù)這8組數(shù)據(jù)計(jì)算得到y關(guān)于x的線性回歸方程為.
x(萬(wàn)元) | 6 | 7 | 8 | 11 | 12 | 14 | 17 | 21 |
y(十萬(wàn)元) | 1.2 | 1.5 | 1.7 | 2 | 2.2 | 2.4 | 2.6 | 2.9 |
(1)求的值(結(jié)果精確到0.0001),并估計(jì)公司A產(chǎn)品投入成本30萬(wàn)元后產(chǎn)品的銷(xiāo)售收入(單位:十萬(wàn)元).
(2)該公司B產(chǎn)品生產(chǎn)的投入成本u(單位:萬(wàn)元)與產(chǎn)品銷(xiāo)售收入v(單位:十萬(wàn)元)也存在較好的線性關(guān)系,且v關(guān)于u的線性回歸方程為.
(i)估計(jì)該公司B產(chǎn)品投入成本30萬(wàn)元后的毛利率(毛利率);
(ii)判斷該公司A,B兩個(gè)產(chǎn)品都投入成本30萬(wàn)元后,哪個(gè)產(chǎn)品的毛利率更大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司準(zhǔn)備上市一款新型轎車(chē)零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷(xiāo).定價(jià)為1000元/件.試銷(xiāo)結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:
日銷(xiāo)售量 | 40 | 60 | 80 | 100 |
頻數(shù) | 9 | 12 | 6 | 3 |
(1)若該4S店試銷(xiāo)期間每個(gè)零件的進(jìn)價(jià)為650元/件,求試銷(xiāo)連續(xù)30天中該零件日銷(xiāo)售總利潤(rùn)不低于24500元的頻率;
(2)試銷(xiāo)結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550元/件;小箱每箱有45件,批發(fā)價(jià)為600元/件.該4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒(méi)銷(xiāo)售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S店.假設(shè)該4店試銷(xiāo)后的連續(xù)30天的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:
日銷(xiāo)售量 | 50 | 70 | 90 | 110 |
頻數(shù) | 5 | 15 | 8 | 2 |
(。┰O(shè)該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤(rùn);
(ⅱ)以總利潤(rùn)作為決策依據(jù),該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是正方形,底面,,、、分別是棱、、的中點(diǎn),對(duì)于平面截四棱錐所得的截面多邊形,有以下三個(gè)結(jié)論:
①截面的面積等于;
②截面是一個(gè)五邊形;
③截面只與四棱錐四條側(cè)棱中的三條相交.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com