【題目】若方程有實(shí)數(shù)根,則稱(chēng)為函數(shù)的一個(gè)不動(dòng)點(diǎn).已知函數(shù).

1)若,求證:有唯一不動(dòng)點(diǎn);

2)若有兩個(gè)不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)依題意,令),利用導(dǎo)數(shù)可知上單調(diào)遞減,在上單調(diào)遞增,且時(shí),取的最小值0,由此即可得出結(jié)論;

2)先證明,則有兩個(gè)不動(dòng)點(diǎn)等價(jià)于函數(shù)上有兩個(gè)不同的零點(diǎn),求出的導(dǎo)數(shù),得到其單調(diào)性,得到函數(shù)的最小值,即可得到的取值范圍,再證明時(shí),有兩個(gè)零點(diǎn);

解:(1)證明:當(dāng)時(shí),由,

),

,易知上恒成立,

故當(dāng)時(shí),,上單調(diào)遞減,

當(dāng)時(shí),上單調(diào)遞增,

,

∴方程有唯一實(shí)數(shù)根,故有唯一不動(dòng)點(diǎn);

2)先證明,令,則,,當(dāng)時(shí),,當(dāng)時(shí),,從而,因此上單調(diào)遞增,故,所以,即,有兩個(gè)不動(dòng)點(diǎn)等價(jià)于函數(shù)上有兩個(gè)不同的零點(diǎn),

易知,當(dāng)時(shí),,當(dāng)時(shí),,所以有,所以,即,

下面說(shuō)明時(shí),有兩個(gè)零點(diǎn),取,故,取,且,故,又,由零點(diǎn)存在性定理知存在唯一,使得,在內(nèi)存在使,綜上有.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性:

2)若函數(shù)在區(qū)間上的最小值為0,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家統(tǒng)計(jì)局統(tǒng)計(jì)了我國(guó)近10年(2009年2018年)的GDP(GDP是國(guó)民經(jīng)濟(jì)核算的核心指標(biāo),也是衡量一個(gè)國(guó)家或地區(qū)總體經(jīng)濟(jì)狀況的重要指標(biāo))增速的情況,并繪制了下面的折線統(tǒng)計(jì)圖.

根據(jù)該折線統(tǒng)計(jì)圖,下面說(shuō)法錯(cuò)誤的是

A. 這10年中有3年的GDP增速在9.00%以上

B. 從2010年開(kāi)始GDP的增速逐年下滑

C. 這10年GDP仍保持6.5%以上的中高速增長(zhǎng)

D. 2013年—2018年GDP的增速相對(duì)于2009年—2012年,波動(dòng)性較小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)(

A.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變

B.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍橫坐標(biāo)不變

C.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變

D.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,橫坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)若a=1,且f(x)≥m(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍;

2)當(dāng)時(shí),若x=0不是f(x)的極值點(diǎn),求實(shí)數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2.

1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;

2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若曲線在點(diǎn)處的切線方程為,求的值;

2)當(dāng)時(shí),是否存在整數(shù),使得關(guān)于的不等式恒成立?若存在,求出的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中.已知:數(shù)列的前項(xiàng)和為,且   .求:對(duì)大于1的自然數(shù),是否存在大于2的自然數(shù),使得,成等比數(shù)列.若存在,求的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查某款電視機(jī)的壽命,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)分組:,,,,,并統(tǒng)計(jì)如圖所示:

并對(duì)不同性別的市民對(duì)這款電視機(jī)的購(gòu)買(mǎi)意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

愿意購(gòu)買(mǎi)該款電視機(jī)

不愿意購(gòu)買(mǎi)該款電視機(jī)

總計(jì)

男性

800

1000

女性

600

總計(jì)

1200

(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均壽命;

(2)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“是否愿意購(gòu)買(mǎi)該款電視機(jī)”與“市民的性別”有關(guān);

(3)以頻率估計(jì)概率,若在該款電視機(jī)的生產(chǎn)線上隨機(jī)抽取4臺(tái),記其中壽命不低于4年的電視機(jī)的臺(tái)數(shù)為X,求X的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù):,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案