精英家教網 > 高中數學 > 題目詳情
設A1、A2是橢圓=1的長軸兩個端點,P1、P2是垂直于A1A2的弦的端點,則直線A1P1與A2P2交點的軌跡方程為( )
A.
B.
C.
D.
【答案】分析:由已知中A1、A2是橢圓=1的長軸兩個端點,P1、P2是垂直于A1A2的弦的端點,則P1、P2的橫坐標相等,縱坐標相反,故設p1(x,y),則p2(x,-y),由橢圓的參數方程,分別求出A1P1的方程和A2P2的方程(含參數θ),聯立方程后,消去參數θ即可得到滿足條件的曲線方程.
解答:解:設p1(x,y),則p2(x,-y)
p1,p2在橢圓上,
則x=3sinθ,y=2cosθ
則A1P1的方程為
A2P2的方程為
Q(x,y)為A1P1,A2P2的交點.聯立方程①,②得x=cscθ,y=2ctgθ
消去θ可得
故選C
點評:本題考查的知識點是軌跡方程,橢圓的簡單性質,其中根據橢圓的參數方程,求出A1P1的方程和A2P2的方程,進而求出兩條直線交點的坐標,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設A1、A2是橢圓
x2
9
+
y2
4
=1
=1的長軸兩個端點,P1、P2是垂直于A1A2的弦的端點,則直線A1P1與A2P2交點的軌跡方程為( 。
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
-
y2
4
=1
D、
y2
9
-
x2
4
=1

查看答案和解析>>

科目:高中數學 來源: 題型:

設A1、A2是橢圓+=1(a>b>0)長軸的兩個端點,P1P2是垂直于x軸的弦,求直線A1P1、A2P2的交點P的軌跡方程.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

設A1、A2是橢圓=1的長軸兩個端點,P1、P2是垂直于A1A2的弦的端點,則直線A1P1與A2P2交點P的軌跡方程為(    )

A.=1                                B.=1

C.=1                                D.=1

查看答案和解析>>

科目:高中數學 來源: 題型:

設A1、A2是橢圓+=1的長軸的兩個端點,P1、P2是垂直于A1A2的弦的端點,則直線A1P1與A2P2交點的軌跡方程為

A.+=1                                 B.+=1

C.=1                                 D.=1

查看答案和解析>>

科目:高中數學 來源: 題型:

A1A2是橢圓=1的長軸兩個端點,P1、P2是垂直于A1A2的弦的端點,則直線A1P1A2P2交點的軌跡方程為(    )

A                          B 

C                          D 

查看答案和解析>>

同步練習冊答案