【題目】在直三棱柱中,,,為線段上一點,平面.
(1)求證:為中點;
(2)若與所成角為,求直線與平面所成角的正弦值.
【答案】(1)見解析; (2).
【解析】
(1)連接交于,連接,則為中點.,由平面,根據(jù)線面平行的性質(zhì)定理,可證,即可證明結(jié)論;
(2)建立空間直角坐標(biāo)系,設(shè),得出坐標(biāo),進(jìn)而有坐標(biāo),
由與所成角為,利用向量夾角公式求出,求出坐標(biāo),求出平面的法向量,根據(jù)線面角公式,即可求解.
(1)證明:連接交于,連接
∵,∴為正方形,∴為中點.
又平面,平面平面,
平面,∴,又為中點,
∴為中點.
(2)如圖,以為原點,以,,為
,,的正方向建立空間直角坐標(biāo)系,
設(shè),則,,,
,,,.
∵與所成角為,
∴,
整理得或(舍去),
,∴,
∵為中點,∴,.
設(shè)平面的一個法向量為,
則,即,取,
得,,∴
設(shè)直線與平面所成角為,
則,
故直線與平面所成角的正弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中,,,分別為,邊的中點,以為折痕把折起,使點到達(dá)點的位置,且.
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列三個命題:(1)如果一個平面內(nèi)有無數(shù)條直線平行于另一個平面,則這兩個平面平行;(2)一個平面內(nèi)的任意一條直線都與另一個平面不相交,則這兩個平面平行;(3)一個平面內(nèi)有不共線的三點到另一個平面的距離相等,則這兩個平面平行;其中正確命題的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間()之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計算可得:(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)若一個零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前3組中抽出6個零件,標(biāo)上記號,并從這6個零件中再抽取2個,求再次抽取的2個零件中恰有1個尺寸不超過的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)圖書館舉行高中志愿者檢索圖書的比賽,從高一、高二兩個年級各抽取10名志愿者參賽。在規(guī)定時間內(nèi),他們檢索到的圖書冊數(shù)的莖葉圖如圖所示,規(guī)定冊數(shù)不小于20的為優(yōu)秀.
(Ⅰ) 從兩個年級的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;
(Ⅱ) 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),把函數(shù)的圖象向右平移個單位,再把圖象上各點的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時,方程恰有兩個不同的實根,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓柱的底面圓的半徑,圓柱的表面積為;點在底面圓上,且直線與下底面所成的角的大小為,
(1)求點到平面的距離;
(2)求二面角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是且邊長為的菱形,側(cè)面為正三角形,其所在平面垂直于底面,若為的中點,為的中點.
(1)求證:平面;
(2)求證:;
(3)在棱上是否存在一點,使平面平面,若存在,確定點的位置;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于概率和統(tǒng)計的幾種說法:①10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為,中位數(shù)為,眾數(shù)為,則,,的大小關(guān)系為;②樣本4,2,1,0,-2的標(biāo)準(zhǔn)差是2;③在面積為的內(nèi)任選一點,則隨機(jī)事件“的面積小于”的概率為;④從寫有0,1,2,…,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.其中正確說法的序號有______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com