【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: , )
參考數(shù)據(jù): ,
.
【答案】(1) (2) 該小組所得線性回歸方程是理想的
【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù),求出x,y的平均數(shù),根據(jù)求線性回歸方程系數(shù)的方法,求出系數(shù)b,把b和x,y的平均數(shù),代入求a的公式,做出a的值,寫出線性回歸方程.
(2)根據(jù)所求的線性回歸方程,預(yù)報當自變量為10和6時的y的值,把預(yù)報的值同原來表中所給的10和6對應(yīng)的值做差,差的絕對值不超過2,得到線性回歸方程理想.
試題解析:
(1)由數(shù)據(jù)求得
由公式求得
再由
所以關(guān)于的線性回歸方程為
(2)當時, , ;
同樣,當時, ,
所以,該小組所得線性回歸方程是理想的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設(shè)曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點為;觀光帶的后一部分為線段.
(1)求函數(shù)為曲線段的函數(shù)的解析式;
(2)若計劃在河流和觀光帶之間新建一個如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點在線段上.當長為多少時,綠化帶的總長度最長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|x|﹣2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)﹣|3t﹣2|≥0成立,求參數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m是實數(shù),,若函數(shù)為奇函數(shù).
求m的值;
用定義證明函數(shù)在R上單調(diào)遞增;
若不等式對任意恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】供電部門對某社區(qū)1000位居民2017年12月份人均用電情況進行統(tǒng)計后,按人均用電量分為五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是( )
A. 12月份人均用電量人數(shù)最多的一組有400人
B. 12月份人均用電量不低于20度的有500人
C. 12月份人均用電量為25度
D. 在這1000位居民中任選1位協(xié)助收費,選到的居民用電量在—組的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點,過點且與坐標軸不垂直的直線與橢圓交于,兩點,當直線經(jīng)過橢圓的一個頂點時其傾斜角恰好為.
(1)求橢圓的方程;
(2)設(shè)為坐標原點,線段上是否存在點,使得?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付又稱手機支付逐漸深入人民群眾的生活某學(xué)校興趣小組為了了解移動支付在人民群眾中的熟知度,對歲的人群隨機抽樣調(diào)查,調(diào)查的問題是你會使用移動支付嗎?”其中,回答“會”的共有50個人,把這50個人按照年齡分成5組,并繪制出頻率分布表部分數(shù)據(jù)模糊不清如表:
分組 | 頻數(shù) | 頻率 | |
第1組 | 10 | ||
第2組 | |||
第3組 | 15 | ||
第4組 | |||
第5組 | 2 | ||
合計 | 50 |
表中處的數(shù)據(jù)分別是多少?
從第1組,第3組,第4組中用分層抽樣的方法抽取6人,求每組抽取的人數(shù).
在抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: + =1(a>0,b>0)的離心率為 ,其右焦點到直線2ax+by﹣ =0的距離為 .
(1)求橢圓C1的方程;
(2)過點P(0,﹣ )的直線l交橢圓C1于A,B兩點.
①證明:線段AB的中點G恒在橢圓C2: + =1的內(nèi)部;
②判斷以AB為直徑的圓是否恒過定點?若是,求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正整數(shù),若它的每個質(zhì)因數(shù)都至少是兩重的(即每個質(zhì)因數(shù)乘方次數(shù)都不小于2),則稱該正整數(shù)為“漂亮數(shù)”.相鄰兩個正整數(shù)皆為“漂亮數(shù)”,就稱它們是一對“孿生漂亮數(shù)”.例如8與9就是一對“孿生漂亮數(shù)”.請你再找出兩對“孿生漂亮數(shù)”來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com