【題目】已知正三角形ABC的邊長為2,D、E、F分別是BC、CA、AB的中點.
(1)在三角形內部隨機取一點P,求滿足|PB|≥1且|PC|≥1的概率;
(2)在A、B、C、D、E、F這6點中任選3點,記這3點圍成圖形的面積為ξ,求隨機變量ξ的分布列與數(shù)學期望Eξ.

【答案】
(1)解:如圖1所示,

分別以正△ABC的頂點B、C為圓心,以1為半徑畫圓弧,交邊AB、BC、AC于點F、D、E;

則點P在區(qū)域①時滿足條件|PB|≥1且|PC|≥1,

其概率為P=1﹣ =1﹣ =1﹣


(2)解:在A、B、C、D、E、F這6點中任選3點,共有20種不同的取法;

記這3點圍成圖形的面積為ξ,則ξ=0, S S,S;其中S=

P(ξ=0)= ,P(ξ= S)= = ,P(ξ= S)= = ,P(ξ=S)= ;

所以隨機變量ξ的分布列為:

ξ

0

P

數(shù)學期望Eξ=0× + × + × + × =


【解析】(1)根據(jù)幾何概型的計算公式,求出滿足條件|PB|≥1且|PC|≥1的概率值即可;(2)根據(jù)題意,求出3點圍成圖形的面積ξ的可能取值以及對應的概率值,列出ξ的分布列,計算數(shù)學期望Eξ的值.
【考點精析】根據(jù)題目的已知條件,利用幾何概型和離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等;在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ex﹣ax,a是常數(shù).
(Ⅰ)若a=1,且曲線y=f(x)的切線l經(jīng)過坐標原點(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半徑為1的動圓與定圓(x-5)2+(y+7)2=16相切,則動圓圓心的軌跡方程是(  )

A. (x-5)2+(y+7)2=25

B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15

C. (x-5)2+(y+7)2=9

D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況通過隨機抽樣,電力公司獲得了50戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖如圖所示).

(1)求a,b的值;

(2)為了解用電量較大的用戶用電情況,在第5、6兩組用分層抽樣的方法選取5

求第5、6兩組各取多少戶?

若再從這5戶中隨機選出2戶進行入戶了解用電情況,求這2戶中至少有一戶月平均用電量在[1000,1200]范圍內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=5,a2=13,an+2=5an+1﹣6an , 則使該數(shù)列的n項和Sn不小于2016的最小自然數(shù)n等于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.

(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求二面角B﹣AC﹣A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面上動點M到直線x=﹣1的距離比它到點F(2,0)的距離少1.
(1)求動點M的軌跡E的方程;
(2)已知點B(﹣1,0),設過點(1,0)的直線l與軌跡E交于不同的兩點P、Q,證明:x軸是∠PBQ的角平分線所在的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)x,y滿足 ,則目標函數(shù)2x+y的最大值為 , 目標函數(shù)4x2+y2的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,點E為線段PC的中點,點F在線段AB上.

(1)若AF= ,求證:CD⊥EF;
(2)設平面DEF與平面DPA所成二面角的平面角為θ,試確定點F的位置,使得cosθ=

查看答案和解析>>

同步練習冊答案