【題目】如圖所示,三棱錐中,平面平面,平面平面,分別是邊上的點(diǎn),且,,,,的中點(diǎn).

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)見證明;(2)

【解析】

1)在中,根據(jù)余弦定理,可得,所以,即是直角三角形,又的中點(diǎn),所以為等邊三角形,根據(jù)線面平行的判定定理即可證明。

(2)以點(diǎn)為原點(diǎn),以,所在直線分別為軸,軸,軸建系,求出,平面

法向量的坐標(biāo),計(jì)算與法向量的夾角,可得所求。

(1)平面平面,平面平面,平面平面

平面,

,則

因?yàn)?/span>,

所以,

中,,,

由余弦定理可得:

解得:

所以,所以是直角三角形,

的中點(diǎn),所以

,所以為等邊三角形,

所以,所以,

平面,平面,

所以平面.

(2)由(1)可知,以點(diǎn)為原點(diǎn),以,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,.

所以,.

設(shè)為平面的法向量,則,即

設(shè),則,,即平面的一個(gè)法向量為

所以,

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟(jì)覆蓋的范圍迅速擴(kuò)張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂(lè)”等形式開始在很多平臺(tái)上線.某創(chuàng)業(yè)者計(jì)劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂(lè)”,為了確定未來(lái)發(fā)展方向,此創(chuàng)業(yè)者對(duì)該景區(qū)附近六家“農(nóng)家樂(lè)”跟蹤調(diào)查了天.得到的統(tǒng)計(jì)數(shù)據(jù)如下表,為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)與“入住率”的散點(diǎn)圖如圖

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若從以上六家“農(nóng)家樂(lè)”中隨機(jī)抽取兩家深入調(diào)查,記為“入住率”超過(guò)的農(nóng)家樂(lè)的個(gè)數(shù),求的概率分布列;

(2)令,由散點(diǎn)圖判斷哪個(gè)更合適于此模型(給出判斷即可,不必說(shuō)明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))

(3)若一年按天計(jì)算,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),年銷售額最大?(年銷售額入住率收費(fèi)標(biāo)準(zhǔn)

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,上的一點(diǎn), 平面 ;

(1)求證:的中點(diǎn);

(2)求證:

(3)設(shè)二面角為60°,,,求長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長(zhǎng)度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過(guò)點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),直線與橢圓交于,兩個(gè)相異點(diǎn),證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DC⊥平面ABC,,,,PQ分別為AE,AB的中點(diǎn).

(1)證明:平面.

(2)求異面直線所成角的余弦值;

(3)求平面與平面所成銳二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的幫圓C經(jīng)過(guò)點(diǎn)M(2,1),N.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)經(jīng)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),當(dāng)△AMB面積取得最大值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,左準(zhǔn)線為為橢圓上任意一點(diǎn),直線,垂足為,直線交于點(diǎn)

(1)若,且,直線的方程為.①求橢圓的方程;②是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

(2)設(shè)直線與圓交于兩點(diǎn),求證:直線均與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心、AB為半徑的圓弧上的任意一點(diǎn),設(shè)向量=λ+μ,則λ+μ的最小值為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案