已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線(xiàn)方程為x=
(1) 求橢圓C的方程;
(2) 設(shè)G、H為橢圓C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
① 當(dāng)直線(xiàn)OG的傾斜角為60°時(shí),求△GOH的面積;
② 是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線(xiàn)GH相切?若存在,請(qǐng)求出該定圓方程;若不存在,請(qǐng)說(shuō)明理由.
解:( 1) 因?yàn)?sub>=,=,a2=b2+c2,
解得a=3,b=,所以橢圓方程為+=1.
所以O(shè)G=,OH=,所以S△GOH=.
② 假設(shè)存在滿(mǎn)足條件的定圓,設(shè)圓的半徑為R,則OG·OH=R·GH,
因?yàn)镺G2+OH2=GH2,故
當(dāng)OG與OH的斜率均存在時(shí),不妨設(shè)直線(xiàn)OG方程為y=kx,
由所以O(shè)G2=,
同理可得OH2=,(將OG2中的k換成-可得)
+==,R=,
當(dāng)OG與OH的斜率有一個(gè)不存在時(shí),可得+==,
故滿(mǎn)足條件的定圓方程為:x2+y2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,過(guò)拋物線(xiàn)C:y2=4x上一點(diǎn)P(1,-2)作傾斜角互補(bǔ)的兩條直線(xiàn),分別與拋物線(xiàn)交于點(diǎn)A(x,y1),B(x2,y2).
(1) 求y1+y2的值;
(2) 若y1≥0,y2≥0,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
(1) 若直線(xiàn)l過(guò)點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線(xiàn)l的方程;
(2) 設(shè)P為平面上的點(diǎn),滿(mǎn)足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線(xiàn)l1和l2,它們分別與圓C1和圓C2相交,且直線(xiàn)l1被圓C1截得的弦長(zhǎng)與直線(xiàn)l2被圓C2截得的弦長(zhǎng)相等,試求所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F的坐標(biāo)為(1,0).
(1) 求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2) 設(shè)M、N是拋物線(xiàn)C的準(zhǔn)線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且它們的縱坐標(biāo)之積為-4,直線(xiàn)MO、NO與拋物線(xiàn)的交點(diǎn)分別為點(diǎn)A、B,求證:動(dòng)直線(xiàn)AB恒過(guò)一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系xOy中,拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),經(jīng)過(guò)點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.
(1) 求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2) 求過(guò)點(diǎn)F,且與直線(xiàn)OA垂直的直線(xiàn)的方程;
(3) 設(shè)過(guò)點(diǎn)M(m,0)(m>0)的直線(xiàn)交拋物線(xiàn)C于D、E兩點(diǎn),ME=2DM,記D和E兩點(diǎn)間的距離為f(m),求f(m)關(guān)于m的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A與橢圓的焦點(diǎn)F1重合,且橢圓的另外一個(gè)焦點(diǎn)F2在BC邊上,則△ABC的周長(zhǎng)是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com