【題目】已知函數(shù).

1)若,討論的單調(diào)性;

2)若在區(qū)間內(nèi)有兩個極值點,求實數(shù)a的取值范圍.

【答案】1上單調(diào)遞減,在上單調(diào)遞增. 2

【解析】

1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值即可;

2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,結(jié)合函數(shù)的零點個數(shù)確定的范圍即可.

解:(1)由題意可得的定義域為,

當(dāng)時,易知

,由,

上單調(diào)遞減,在上單調(diào)遞增.

2)由(1)可得

當(dāng)時,

,則,

內(nèi)有兩個極值點,

內(nèi)有兩個零點,

.

,則

當(dāng),即時,,所以在上單調(diào)遞減,

的圖像至多與x軸有一個交點,不滿足題意.

當(dāng),即時,在,單調(diào)遞增,

的圖像至多與x軸有一個交點,不滿足題意.

當(dāng),即時,上單調(diào)遞增,在上單調(diào)遞減

知,要使內(nèi)有兩個零點,必須滿足,解得.

綜上,實數(shù)a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·衢州調(diào)研)已知四棱錐PABCD的底面ABCD是菱形,∠ADC120°,AD的中點M是頂點P在底面ABCD的射影,NPC的中點.

(1)求證:平面MPB⊥平面PBC

(2)MPMC,求直線BN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).證明:

1)存在唯一x0∈(0,1),使f(x0)0

2)存在唯一x1∈(1,2),使g(x1)0,且對(1)中的x0,有x0x1<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)恒成立的實數(shù)的最大值;

(2)設(shè),,且滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求證:;

2)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值;

(2)已知關(guān)于的不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù),).

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C交于A,B兩點,直線l的傾斜角,P點坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進行調(diào)查統(tǒng)計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.

1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);

生二孩

不生二孩

合計

頭胎為女孩

60

頭胎為男孩

合計

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在頭胎生女孩家庭中抽取了5戶,進一步了解情況,在抽取的5戶中再隨機抽取3戶,求這3戶中恰好有2戶生二孩的概率.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,,,且,分別為棱,的中點.

1)證明:直線共面;并求其所成角的余弦值;

2)在棱上是否存在點,使得平面,若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案