將函數(shù)y=sin(6x+
π
4
)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,再向右平移
π
8
個(gè)單位,得到函數(shù)f(x).
(1)寫出f(x)的解析式
(2)求f(x)的對(duì)稱中心.
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
(2)根據(jù)正弦函數(shù)的圖象的對(duì)稱性,求出f(x)的對(duì)稱中心.
解答: 解:(1)將函數(shù)y=sin(6x+
π
4
)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,可得函數(shù)y=sin(2x+
π
4
)的圖象,
再向右平移
π
8
個(gè)單位,可得f(x)=sin[2(x-
π
8
)+
π
4
]=sin2x的圖象.
(2)令2x=kπ,k∈z,求得x=
k
2
π,k∈z,
∴函數(shù)f(x)的對(duì)稱中心(
2
,0)
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),過橢圓C的右焦點(diǎn)F的直線l交橢圓于A,B兩點(diǎn),交y軸于P點(diǎn),設(shè)
PA
=m
AF
,
PB
=n
BF
,(m,n∈R).已知橢圓C上的點(diǎn)到焦點(diǎn)F的最大值與最小值的比值為3+2
2

(1)求橢圓的離心率;
(2)求證:m+n為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=1,AC=2,∠BAC=120°,點(diǎn)M是邊BC上的動(dòng)點(diǎn),動(dòng)點(diǎn)N滿足∠MAN=30°,
AM
AN
=3(點(diǎn)A,M,N按逆時(shí)針方向排列).
(1)若
AN
AC
(λ>0),求BN的長(zhǎng);
(2)求△ABN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x-cos2x(x∈R).
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角三角形ABC中,a、b、c分別是角A、B、C的對(duì)邊,若f(A)=2,c=3,△ABC的面積為3
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測(cè)試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于80小于90為二等品,小于80為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利30元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機(jī)抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) [70,75) [75,80) [80,85) [85,90) [90,95) [95,100)
3 7 20 40 20 10
5 15 35 35 7 3
現(xiàn)將根據(jù)上表統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計(jì)算新工人乙生產(chǎn)三件產(chǎn)品A,給工廠帶來(lái)盈利大于或等于100元的概率;
(2)記甲乙分別生產(chǎn)一件產(chǎn)品A給工廠帶來(lái)的盈利和記為X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某良種培育基地正在培育一種小麥新品種A,將其與原有的一個(gè)優(yōu)良品種B進(jìn)行對(duì)照試驗(yàn),兩種小麥共種植了34畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下.
(Ⅰ)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點(diǎn)?
(Ⅱ)通過觀察莖葉圖,對(duì)品種A與B的畝產(chǎn)量及其穩(wěn)定性進(jìn)行比較,寫出統(tǒng)計(jì)結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=ax42+2
(2)y=
3x2
+log2x
(3)y=
2x3-3x+
x
-1
x
x

(4)y=2xtanx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinx+1,是否存在實(shí)數(shù)a,使得函數(shù)y=(f(x)-1)2+2af(
π
2
-x)+
a
2
-6在區(qū)間[0,
π
2
]上的最大值是4?若存在,求出對(duì)應(yīng)的a的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程x2-2x+a=0在(
1
2
,3)上恰有2個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案