【題目】已知的兩個頂點的坐標分別為,,且所在直線的斜率之積等于,記頂點的軌跡為.
(Ⅰ)求頂點的軌跡的方程;
(Ⅱ)若直線與曲線交于兩點,點在曲線上,且為的重心(為坐標原點),求證:的面積為定值,并求出該定值.
【答案】(Ⅰ)(Ⅱ)證明見解析,定值為.
【解析】
(Ⅰ)設(shè),根據(jù)題意列方程即可求解.
(Ⅱ)設(shè),,,由為的重心,可得,從而,,將直線與橢圓方程聯(lián)立整理利用韋達定理求出點坐標,代入橢圓方程可得,再利用弦長公式以及三角形的面積公式即可求解.
(Ⅰ)設(shè),
因為點的坐標為,所以直線的斜率為
同理,直線的斜率為
由題設(shè)條件可得,.
化簡整理得,頂點的軌跡的方程為:.
(Ⅱ)設(shè),,,
因為為的重心,所以,
所以,,
由得,
,,
,,∴,
又點在橢圓上,所以,
∴,
因為為的重心,所以是的倍,
,
原點到直線的距離為,
.
所以,
所以,的面積為定值,該定值為.
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線E:(,)的左、右焦點分別為,,已知點為拋物線C:的焦點,且到雙曲線E的一條漸近線的距離為,又點P為雙曲線E上一點,滿足.則
(1)雙曲線的標準方程為______;
(2)的內(nèi)切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,,,為棱上的動點.
(1)若為的中點,求證:平面;
(2)若平面平面ABC,且是否存在點,使二面角的平面角的余弦值為?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:極坐標與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機會,每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學業(yè)成績對學生進行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名.其評估成績近似的服從正態(tài)分布.現(xiàn)隨機抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數(shù)據(jù)進行了分組,繪制了如下頻率分布直方圖:
(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若學校規(guī)定評估成績超過82.7分的畢業(yè)生可參加三家公司的面試.
用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值.請利用估計值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);
附:若隨機變量,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)常數(shù),函數(shù)
(1)當時,判斷在上單調(diào)性,并加以證明;
(2)當時,研究的奇偶性,并說明理由;
(3)當時,若存在區(qū)間使得在上的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列、、,對于給定的正整數(shù),記,.若對任意的正整數(shù)滿足:,且是等差數(shù)列,則稱數(shù)列為“”數(shù)列.
(1)若數(shù)列的前項和為,證明:為數(shù)列;
(2)若數(shù)列為數(shù)列,且,求數(shù)列的通項公式;
(3)若數(shù)列為數(shù)列,證明:是等差數(shù)列 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com