【題目】已知函數(shù)y=f(x)是定義在R上的偶函數(shù),對于x∈R,都有f(x+4)=f(x)+f(2)成立,當(dāng)x1 , x2∈[0,2]且x1≠x2時,都有 <0,給出下列四個命題:
①f(﹣2)=0;
②直線x=﹣4是函數(shù)y=f(x)的圖象的一條對稱軸;
③函數(shù)y=f(x)在[4,6]上為增函數(shù);
④函數(shù)y=f(x)在(﹣8,6]上有四個零點.
其中所有正確命題的序號為

【答案】①②④
【解析】解:①:對于任意x∈R,都有f(x+4)=f (x)+f (2)成立,令x=﹣2,則f(﹣2+4)=f(﹣2)+f (2)=f(2),
即f(﹣2)=0,即①正確;
②:由(1)知f(x+4)=f (x),則f(x)的周期為4,
又∵f(x)是R上的偶函數(shù),∴f(x+4)=f(﹣x),
而f(x)的周期為4,則f(x+4)=f(﹣4+x),f(﹣x)=f(﹣x﹣4),
∴f(﹣4﹣x)=f(﹣4+x),
則直線x=﹣4是函數(shù)y=f(x)的圖象的一條對稱軸,即②正確;
③:當(dāng)x1 , x2∈[0,2],且x1≠x2時,都有 <0,
∴函數(shù)y=f(x)在[0,2]上為減函數(shù),
而f(x)的周期為4,
∴函數(shù)y=f(x)在[4,6]上為減函數(shù),故③錯誤;
④:∵f(2)=0,f(x)的周期為4,函數(shù)y=f(x)在[0,2]上為增函數(shù),
在[﹣2,0]上為減函數(shù),
∴作出函數(shù)在(﹣8,6]上的圖象如圖:
則函數(shù)y=f(x)在(﹣8,6]上有4個零點,故④正確.
所以答案是.①②④

【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,離心率

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若分別是橢圓的左、右焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)=a+ (a,b∈R)有最大值和最小值,且最大值與最小值之和為6,則3a﹣2b=(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2-ln x,a∈R.

(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程.

(2)討論f(x)的單調(diào)性.

(3)是否存在a,使得方程f(x)=2有兩個不等的實數(shù)根?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因為對一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請由上述結(jié)論寫出關(guān)于a1,a2,…,an的推廣式;

(2)參考上述證法,請對你推廣的結(jié)論加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-x3+x2+b,g(x)=aln x.

(1)若f(x)在 上的最大值為,求實數(shù)b的值;

(2)若對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在圓心角為90°的扇形AOB中,以圓心O作為起點作射線OC,OD,則使∠AOC+∠BOD<45°的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(1,0)對稱,且當(dāng)x∈(﹣∞,0),f(x)+xf′(x)<0成立.若a=(20.2)f(20.2),b=(ln2)f(ln2),c=(log2 )f(log2 ),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

  1. 估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
  2. 能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
  3. 根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人,需要志愿幫助的老年人的比例?說明理由

附:

查看答案和解析>>

同步練習(xí)冊答案