【題目】“中國(guó)式過馬路”是網(wǎng)友對(duì)部分中國(guó)人集體闖紅燈現(xiàn)象的一種調(diào)侃,及“湊夠一撮人就可以走了,和紅綠燈無(wú)關(guān)”,某校研究性學(xué)習(xí)小組對(duì)全校學(xué)生按“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”等三種形式進(jìn)行調(diào)查獲得下表數(shù)據(jù):

跟從別人闖紅燈

從不闖紅燈

帶頭闖紅燈

男生

980

410

60

女生

340

150

60

用分層抽樣的方法,從所有被調(diào)查的人中抽取一個(gè)容量為的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人,

(Ⅰ) 求的值;

(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,任選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動(dòng),求這2人中至少有1人是女生的概率.

【答案】(Ⅰ); (Ⅱ).

【解析】試題分析:(Ⅰ)根據(jù)分層抽樣的抽取比例可求得值;
(Ⅱ)利用系統(tǒng)抽樣的定義求出分段間隔,可得所抽取的個(gè)人的編號(hào),判斷抽取的 人中有女,求得從人中任選取人的情況種數(shù),和至少有一名女生的情況種數(shù),利用古典概型的概率公式計(jì)算.

試題解析:(Ⅰ)由題意得:

解得

(Ⅱ)因?yàn)樗袇⑴c調(diào)查的人數(shù)為 ,所以從在“帶頭闖紅燈”的人中用分層抽樣抽取的人數(shù)為,

其中男生為人,女生為人,設(shè)從“帶頭闖紅燈”中抽取的6人中男生用表示,女生分別用表示,則從這6人中任選取2人所有的基本事件為: ,,, 共有15個(gè).這兩人均是男生的基本事件為,則至少有一個(gè)是女生的基本事件共有12個(gè).故從這6人中任選取2人,至少有一個(gè)是女生的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號(hào)電視機(jī)在10個(gè)賣場(chǎng)的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場(chǎng)的銷售情況,得到如圖所示的莖葉圖.

為了鼓勵(lì)賣場(chǎng),在同型號(hào)電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場(chǎng)命名為該型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”.

(1)當(dāng)時(shí),記甲型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”數(shù)量為,乙型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”數(shù)量為,比較的大小關(guān)系;

(2)在這10個(gè)賣場(chǎng)中,隨機(jī)選取2個(gè)賣場(chǎng),記為其中甲型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

(3)若,記乙型號(hào)電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷為何值時(shí),達(dá)到最小值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線

(Ⅰ)求直線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn)為橢圓上一點(diǎn),求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】a、b是方程2lg2 xlg x410的兩個(gè)實(shí)根,求lg(ab 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)榧?/span>A,B{x|x<a}

(1)求集合A;

(2)ABa的取值范圍;

(3)若全集U{x|x4},a=-1,U AA(U B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】線段AB的兩端在直二面角αlβ的兩個(gè)面內(nèi),并與這兩個(gè)面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為/臺(tái)的小商品,經(jīng)調(diào)查得知如下數(shù)據(jù).若銷售價(jià)上下調(diào)整,銷售量和利潤(rùn)大體如下:

銷售價(jià)(/臺(tái))

日銷售量(臺(tái)

日銷售額

日銷售利潤(rùn)(

1)在下面給出的直角坐標(biāo)系中,根據(jù)表中的數(shù)據(jù)描出實(shí)數(shù)對(duì)的對(duì)應(yīng)點(diǎn),并寫出的一個(gè)函數(shù)關(guān)系式;

2)請(qǐng)把表中的空格里的數(shù)據(jù)填上;

3)根據(jù)表中的數(shù)據(jù)求的函數(shù)關(guān)系式,并指出當(dāng)銷售單價(jià)為多少元時(shí),才能獲得最大日銷售利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A是實(shí)數(shù)集,滿足若aA,則A,a≠1,且1A.

(1)若2∈A,則集合A中至少還有幾個(gè)元素?求出這幾個(gè)元素.

(2)集合A中能否只含有一個(gè)元素?請(qǐng)說(shuō)明理由.

(3)若aA,證明:1-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案