【題目】a、b是方程2lg2 xlg x410的兩個(gè)實(shí)根,求lg(ab 的值.

【答案】12

【解析】試題分析: 設(shè)t=lg x,則方程化為2t2-4t+1=0,由題意可得lg a+lg b=2,lgalgb=①.利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)lg(ab lg a+lgb ,把①代入從而求得結(jié)果.

試題解析:

原方程可化為2lg2x4lg x10

設(shè)tlg x,則原方程化為2t24t10,

t1t22t1t2.

由已知a,b是原方程的兩個(gè)根,則t1lg at2lg b,

lg alg b2lg a·lg b,lg(ab (lg alg b12.

lg(ab12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(1,0),傾斜角為

(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;

(Ⅱ)若曲線C經(jīng)過伸縮變換 后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且, .

1求函數(shù)的解析式;

2)判斷并證明函數(shù)上的單調(diào)性;

3)令,若對(duì)任意的都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8.

有時(shí)可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).

1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)判斷函數(shù)的奇偶性,并說明理由;

2)證明:當(dāng)時(shí),函數(shù)上為減函數(shù);

3)求函數(shù)的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點(diǎn)的直線與原點(diǎn)的距離為

1求橢圓的方程

2已知定點(diǎn),若直線與橢圓交于C、D兩點(diǎn)是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國(guó)式過馬路”是網(wǎng)友對(duì)部分中國(guó)人集體闖紅燈現(xiàn)象的一種調(diào)侃,及“湊夠一撮人就可以走了,和紅綠燈無關(guān)”,某校研究性學(xué)習(xí)小組對(duì)全校學(xué)生按“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”等三種形式進(jìn)行調(diào)查獲得下表數(shù)據(jù):

跟從別人闖紅燈

從不闖紅燈

帶頭闖紅燈

男生

980

410

60

女生

340

150

60

用分層抽樣的方法,從所有被調(diào)查的人中抽取一個(gè)容量為的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人,

(Ⅰ) 求的值;

(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,任選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動(dòng),求這2人中至少有1人是女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若上為增函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線,使得對(duì)任意都有恒成立,則稱函數(shù)有一個(gè)寬度為的通道,給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度可以為1的函數(shù)的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案