【題目】設(shè)函數(shù)fn(x)=xn+bx+c(n∈N* , b,c∈R)
(Ⅰ)設(shè)n≥2,b=1,c=﹣1,證明:fn(x)在區(qū)間( )內(nèi)存在唯一的零點;
(Ⅱ)設(shè)n=2,若對任意x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4,求b的取值范圍.

【答案】解:(Ⅰ)n≥2,b=1,c=﹣1時,fn(x)=xn+x﹣1,
fn(1)= <0,
∴fn(x)在區(qū)間( )內(nèi)存在零點,
+1>0,
∴fn(x)在區(qū)間( ,1)上是單調(diào)遞增函數(shù),
故fn(x)在區(qū)間( )內(nèi)存在唯一的零點;
(Ⅱ)當(dāng)n=2時, ,
對任意的x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4等價于f2(x)在[﹣1,1]上的最大值與最小值之差M=f(x)max﹣f(x)min≤4,
據(jù)此分類討論如下:
①當(dāng)| |>1,即|b|>2時,M=|f2(1)﹣f2(﹣1)|=2|b|>4,與題設(shè)矛盾;
②當(dāng)﹣1 <0,即0<b≤2時,M= = ≤4恒成立;
②當(dāng)0<﹣ ,即﹣2≤b≤0時,M= = 恒成立;
綜上知﹣2≤b≤2
【解析】(Ⅰ)表示出fn(x),根據(jù)零點判定定理可得函數(shù)在區(qū)間( )內(nèi)存在零點,利用導(dǎo)數(shù)可判斷函數(shù)單調(diào),從而可得零點的唯一性;(Ⅱ)對任意的x1 , x2∈[﹣1,1],均有|f2(x1)﹣f2(x2)丨≤4等價于f2(x)在[﹣1,1]上的最大值與最小值之差M=f(x)max﹣f(x)min≤4,按照對稱軸在區(qū)間[﹣′1,1]的外邊、內(nèi)部進行分類討論,可得函數(shù)的最大值、最小值及最大值與最小值的差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明. 下面是趙爽的弦圖及注文,弦圖是一個以勾股之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用股+(股-勾)朱實+黃實=弦實,化簡,得勾2+股2=弦2. 設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. 134 B. 866 C. 300 D. 500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計

10

55

合計


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)的定義域為D,若對于任意x1、x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某一個對稱中心,并利用對稱中心的上述定義,可得到f( )+f( )+…+f( )+f( )的值為(
A.4027
B.﹣4027
C.8054
D.﹣8054

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

)討論上的單調(diào)性;

)當(dāng)時,若曲線上總存在相異兩點,使曲線兩點處的切線互相平行,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為的函數(shù),如果存在區(qū)間),同時滿足:

內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是時, 的值域也是

則稱函數(shù)是區(qū)間上的“保值函數(shù)”.

(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;

(2)已知)是區(qū)間上的“保值函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=ex(exa)﹣a2x

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案