【題目】已知對任意的x∈R,3a(sinx+cosx)+2bsin2x≤3(a,b∈R)恒成立,則當a+b取得最小值時,a的值是

【答案】﹣
【解析】解:由題意可令sinx+cosx=﹣ , 兩邊平方可得1+2sinxcosx=
即有sin2x=﹣ ,
代入3a(sinx+cosx)+2bsin2x≤3,可得﹣ a﹣ b≤3,
可得a+b≥﹣2,
當a+b=﹣2時,令t=sinx+cosx= sin(x+ )∈[﹣ , ],
即有sin2x=t2﹣1,代入3a(sinx+cosx)+2bsin2x≤3,
可得﹣2bt2+3(2+b)t+3+2b≥0,對t∈[﹣ , ]恒成立,
則△=9(2+b)2+8b(3+2b)≤0,
即為(5b+6)2≤0,但(5b+6)2≥0,則5b+6=0,可得b=﹣ ,a=﹣
而當b=﹣ ,a=﹣ 時,3a(sinx+cosx)+2bsin2x=﹣ t﹣ (t2﹣1)
=﹣ (t+ 2+3≤3.
所以當a+b取得最小值﹣2,此時a=﹣
所以答案是:﹣

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù),為偶函數(shù),函數(shù)的圖象與直線相切.

(1)求的解析式;

(2)已知函數(shù),求的單調遞減區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,集合

時,求

,不等式恒成立,求實數(shù)a的取值范圍;

若“”是“”的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題關于的不等式的解集是,命題函數(shù)的定義域為.

(1)如果真命題,求實數(shù)的取值范圍;

(2)如果真命題, 假命題, 實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某樂隊參加一戶外音樂節(jié),準備從3首原創(chuàng)新曲和5首經典歌曲中隨機選擇4首進行演唱.
(1)求該樂隊至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊的互動指數(shù)為a(a為常數(shù)),演唱一首經典歌曲觀眾與樂隊的互動指數(shù)為2a,求觀眾與樂隊的互動指數(shù)之和X的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,點A、B是函數(shù)f(x)圖象上不同兩點,則∠AOB(O為坐標原點)的取值范圍是(
A.(0,
B.(0, ]
C.(0,
D.(0, ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當, 取得極值,的值

(Ⅱ)當函數(shù)有兩個極值點,,總有 成立,的取值范圍.

查看答案和解析>>

同步練習冊答案