【題目】數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題:松長(zhǎng)四尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.如圖,是源于其思想的一個(gè)程序框圖.若輸入的分別為8、2,則輸出的( )

A. 2 B. 3 C. 4 D. 5

【答案】D

【解析】

由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量n的值,模擬程序的運(yùn)行過(guò)程,可得答案.

輸入的a、b分別為8、2,n=1

第一次執(zhí)行循環(huán)體后a=12,b=4,不滿足退出循環(huán)的條件,

第二次執(zhí)行循環(huán)體后n=2,a=18,b=8,不滿足退出循環(huán)的條件,

第三次執(zhí)行循環(huán)體后n=3,a=27,b=16,不滿足退出循環(huán)的條件,

第四次執(zhí)行循環(huán)體后n=4,a,b=32,不滿足退出循環(huán)的條件,

第五次執(zhí)行循環(huán)體后n=5,ab=64,滿足退出循環(huán)的條件,

故輸出的n=5,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,是棱上的一點(diǎn).

(1)證明:平面

(2)若平面,求的值;

(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),其中,為坐標(biāo)原點(diǎn)

(1),求的面積;

(2)在軸上是否存在定點(diǎn),使得直線的斜率互為相反數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年冬,北京霧霾天數(shù)明顯減少,據(jù)環(huán)保局統(tǒng)計(jì)三個(gè)月的空氣質(zhì)量,達(dá)到優(yōu)良的天數(shù)超過(guò)70.重度污染的天數(shù)僅有4.主要原因是政府對(duì)治理霧霾采取了有效措施,如①減少機(jī)動(dòng)車尾氣排放;②實(shí)施了煤改電或煤改氣工程;③關(guān)停了大量的排污企業(yè);④部分企業(yè)季節(jié)性的停產(chǎn).為了解農(nóng)村地區(qū)實(shí)施煤改氣工程后天然氣使用情況,從某鄉(xiāng)鎮(zhèn)隨機(jī)抽取100戶,進(jìn)行均用氣量調(diào)查,得到的用氣量數(shù)據(jù)(單位:千立方米)均在區(qū)間圍內(nèi),將數(shù)據(jù)按區(qū)間列表如下:

分組

頻數(shù)

頻率

14

0.14

55

0.55

4

0.04

2

0.02

合計(jì)

100

1

1)求表中的值;

2)若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間中點(diǎn)值代替,估計(jì)該鄉(xiāng)每戶月平均用氣量;

3)從用量高于3千立方米的用戶中任選2戶,進(jìn)行燃?xì)馐褂玫臐M意度調(diào)查,求這2戶用氣量處于不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)不變,再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則下列說(shuō)法正確的是( )

A. 函數(shù)的一條對(duì)稱軸是

B. 函數(shù)的一個(gè)對(duì)稱中心是

C. 函數(shù)的一條對(duì)稱軸是

D. 函數(shù)的一個(gè)對(duì)稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.

(1)求曲線的極坐標(biāo)方程;

(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)fx)=x2+xlnx+1在其定義域的一個(gè)子區(qū)間(2k1k+2)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的個(gè)數(shù)為(

①命題中,若,則的逆命題是真命題

②若命題,則

命題為真命題命題為假命題的充要條件

④設(shè)均為非零向量,則的夾角為銳角的必要不充分條件

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案