【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
【答案】(1); (2).
【解析】
(1)求出直線l的直角坐標(biāo)方程為y2,曲線C是圓心為(,1),半徑為r的圓,直線l與曲線C相切,求出r=2,曲線C的普通方程為(x)2+(y﹣1)2=4,由此能求出曲線C的極坐標(biāo)方程.
(2)設(shè)M(ρ1,θ),N(ρ2,),(ρ1>0,ρ2>0),由2sin(2),由此能求出△MON面積的最大值.
(1)由題意可知將直線的直角坐標(biāo)方程為,
曲線是圓心為,半徑為的圓,直線與曲線相切,可得:;
可知曲線的方程為,
曲線的極坐標(biāo)方程為,
即.
(2)由(1)不妨設(shè),,
.
當(dāng)時(shí),,
面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若函數(shù)存在兩個(gè)零點(diǎn),,使,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次測試成績滿分是為150分,設(shè)名學(xué)生的得分分別為,為名學(xué)生中得分至少為分的人數(shù).記為名學(xué)生的平均成績,則( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長四尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖,是源于其思想的一個(gè)程序框圖.若輸入的分別為8、2,則輸出的( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出的是2000年至2016年我國實(shí)際利用外資情況,以下結(jié)論正確的是( )
A. 2000年以來我國實(shí)際利用外資規(guī)模與年份呈負(fù)相關(guān)
B. 2010年以來我國實(shí)際利用外資規(guī)模逐年增大
C. 2008年以來我國實(shí)際利用外資同比增速最大
D. 2010年以來我國實(shí)際利用外資同比增速最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,再向右平移個(gè)單位長度,得到函數(shù)的圖象,則下列說法正確的是( )
A. 函數(shù)的一條對稱軸是
B. 函數(shù)的一個(gè)對稱中心是
C. 函數(shù)的一條對稱軸是
D. 函數(shù)的一個(gè)對稱中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的值域;
(2)若,函數(shù)在上的最大值是,求的取值范圍;
(3)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請求出相關(guān)系數(shù)(精確到0.01)并加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測2018年該地區(qū)患“三高”的人數(shù).
參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù) 回歸方程 中斜率和截距的最小二乘法估計(jì)公式分別為:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com