【題目】如圖,某觀測(cè)站在港口A的南偏西40°方向的C處,測(cè)得一船在距觀測(cè)站31海里的B處,正沿著從港口出發(fā)的一條南偏東20°的航線上向港口A開(kāi)去,當(dāng)船走了20海里到達(dá)D處,此時(shí)觀測(cè)站又測(cè)得CD等于21海里,問(wèn)此時(shí)船離港口A處還有多遠(yuǎn)?

【答案】解:由題∠CAB=60°,設(shè)∠ACD=α,∠CDB=β,
在△CDB中,由余弦定理得
,

在△ACD中,
由正弦定理得 ,
,
即船離港口A處還有15海里.

【解析】在△BDC中,先由余弦定理可得,可求cos∠CDB,進(jìn)而可求sin∠CDB,由三角形的內(nèi)角和定理可得sinα,再在△ACD中,由正弦定理求出AD的長(zhǎng);
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正弦定理的定義,掌握正弦定理:即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,tanA是以﹣4為第三項(xiàng),4為第七項(xiàng)的等差數(shù)列的公差,tanB是以2為公差,9為第五項(xiàng)的等差數(shù)列的第二項(xiàng),則這個(gè)三角形是(
A.銳角三角形
B.鈍角三角形
C.等腰直角三角形
D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一房產(chǎn)商競(jìng)標(biāo)得一塊扇形OPQ地皮,其圓心角∠POQ= ,半徑為R=200m,房產(chǎn)商欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計(jì)方案如圖,方案一:矩形ABCD的一邊AB在半徑OP上,C在圓弧上,D在半徑OQ;方案二:矩形EFGH的頂點(diǎn)在圓弧上,頂點(diǎn)G,H分別在兩條半徑上.請(qǐng)你通過(guò)計(jì)算,為房產(chǎn)商提供決策建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=asin2x+bcos2x(ab≠0),有下列四個(gè)命題:其中正確命題的序號(hào)為(填上所有正確命題的序號(hào))
①若a=1,b=﹣ ,要得到函數(shù)y=f(x)的圖象,只需將函數(shù)y=2sin2x的圖象向右平移 個(gè)單位;
②若a=1,b=﹣1,則函數(shù)y=f(x)的一個(gè)對(duì)稱中心為( ,0);
③若y=f(x)的一條對(duì)稱軸方程為x= ,則a=b;
④若方程asin2x+bcos2x=m的正實(shí)數(shù)根從小到大依次構(gòu)成一個(gè)等差數(shù)列,則這個(gè)等差數(shù)列的公差為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓關(guān)于直線對(duì)稱的圓為.

(1)求圓的方程;

(2)過(guò)點(diǎn)作直線與圓交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(算法流程圖)的輸出值x為(

A.13
B.12
C.22
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)分別到兩定點(diǎn) 連線的斜率之乘積為,設(shè)的軌跡為曲線 , 分別為曲線的左右焦點(diǎn),則下列命題中:

(1)曲線的焦點(diǎn)坐標(biāo)為, ;

(2)若,則 ;

(3)當(dāng)時(shí), 的內(nèi)切圓圓心在直線上;

(4)設(shè),則的最小值為.

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校高二年級(jí)學(xué)生中隨機(jī)抽取了20名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.

求圖中實(shí)數(shù)a的值;

若該校高二年級(jí)共有學(xué)生600名,試估計(jì)該校高二年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

若從數(shù)學(xué)成績(jī)?cè)赱60,70)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中, 是等腰直角三角形, ,側(cè)棱 分別為的中點(diǎn),點(diǎn)在平面上的射影是的重心.

(1)求證: 平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案