分析 (1)證明平面EAC⊥平面PBC,只需證明AC⊥平面PBC,即證AC⊥PC,AC⊥BC;
(2)根據(jù)題意,建立空間直角坐標(biāo)系,用坐標(biāo)表示點(diǎn)與向量,求出面PAC的法向量,由此能求出直線PA與平面EAC所成角的余弦值.
解答 證明:(1)∵PC⊥平面ABCD,AC?平面ABCD,
∴AC⊥PC,
∵AB=2,AD=CD=1,∴AC=BC=$\sqrt{2}$,
∴AC2+BC2=AB2,∴AC⊥BC,
又BC∩PC=C,∴AC⊥平面PBC,
∵AC?平面EAC,∴平面PBC⊥平面EAC.
解:(2)取AB中點(diǎn)F,以C為原點(diǎn),CF為x軸,CD為y軸,CP為z軸,建立空間直角坐標(biāo)系,
∵AB=2AD=2CD=2,BC=$\sqrt{2}$,且PC⊥CD,BC⊥PA,E是PB的中點(diǎn),
∴則C(0,0,0),A(1,1,0),B(1,-1,0),設(shè)P(0,0,a)(a>0),
則E($\frac{1}{2}$,-$\frac{1}{2}$,$\frac{a}{2}$),$\overrightarrow{CA}$=(1,1,0),$\overrightarrow{CP}$=(0,0,a),$\overrightarrow{CE}$=($\frac{1}{2},-\frac{1}{2},\frac{a}{2}$).
設(shè)平面PAC的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CA}=x+y=0}\\{\overrightarrow{m}•\overrightarrow{CP}=az=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-1,0).
設(shè)$\overrightarrow{n}$=(x,y,z)為面EAC的法向量,
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=x+y=0}\\{\overrightarrow{n}•\overrightarrow{CE}=x-y+az=0}\end{array}\right.$,取x=a,得$\overrightarrow{n}$=(a,-a,-2),
∵二面角P-AC-E的正弦值為$\frac{{\sqrt{3}}}{3}$,
∴依題意,|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{a}{\sqrt{{a}^{2}+2}}$=$\frac{\sqrt{6}}{3}$,解得a=2.
于是$\overrightarrow{n}$=(2,-2,-2),$\overrightarrow{PA}$=(1,1,-2).
設(shè)直線PA與平面EAC所成角為θ,則sin θ=|cos<$\overrightarrow{PA}$,$\overrightarrow{n}$>|=$\frac{\overrightarrow{PA}•\overrightarrow{n}}{|\overrightarrow{PA}|•|\overrightarrow{n}|}$=$\frac{\sqrt{2}}{3}$,
直線PA與平面EAC所成角的余弦值為$\sqrt{1-(\frac{\sqrt{2}}{3})^{2}}$=$\frac{\sqrt{7}}{3}$.
點(diǎn)評(píng) 本題考查面面垂直,考查線面角,解題的關(guān)鍵是掌握面面垂直的判定,利用向量的方法研究線面角,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com