【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運(yùn)輸貨物到乙地,運(yùn)輸成本包括燃料費(fèi)用和其他費(fèi)用.已知該貨輪每小時(shí)的燃料費(fèi)與其速度的平方成正比,比例系數(shù)為,其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).

)請將該貨輪從甲地到乙地的運(yùn)輸成本表示為航行速度(海里/小時(shí))的函數(shù).

)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

【答案】(1)(2)當(dāng)貨輪航行速度為海里/小時(shí)時(shí),能使該貨輪運(yùn)輸成本最少為

【解析】試題分析:(1)從甲地到乙地的運(yùn)輸成本y()=每小時(shí)的燃料費(fèi)用×?xí)r間+每小時(shí)其它費(fèi)用×?xí)r間;(2)(1)得出函數(shù)表達(dá)式,用基本不等式求出最小值即可.

試題解析:

)由題意,每小時(shí)的燃料費(fèi)用為,從甲地到乙地所用的時(shí)間為小時(shí),

則從甲地到乙地的運(yùn)輸成本,

故所求的函數(shù)為,

)由()知

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

故當(dāng)貨輪航行速度為海里/小時(shí)時(shí),能使該貨輪運(yùn)輸成本最少為元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動(dòng)《男生女生向前沖》.活動(dòng)共有四關(guān),若四關(guān)都闖過,則闖關(guān)成功,否則落水失。O(shè)男生闖過一至四關(guān)的概率依次是 , , , ,女生闖過一至四關(guān)的概率依次是 , ,
(Ⅰ)求男生甲闖關(guān)失敗的概率;
(Ⅱ)設(shè)X表示四人沖關(guān)小組闖關(guān)成功的人數(shù),求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有關(guān)部門從甲、乙兩個(gè)城市所有的自動(dòng)售貨機(jī)中隨機(jī)抽取了16臺(tái),記錄下上午8:00~11:00之間各自的銷售情況(單位:元):

甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;

乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.

試用兩種不同的方式分別表示上面的數(shù)據(jù),并簡要說明各自的優(yōu)點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成2×2列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計(jì)

比較細(xì)心

比較粗心

合計(jì)


(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系. 參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量K2的臨界值參考表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=2x2和直線l:y=kx+1,O為坐標(biāo)原點(diǎn).
(1)求證:l與C必有兩交點(diǎn);
(2)設(shè)l與C交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),且直線OA和OB的斜率之和為1,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌新款夏裝即將上市,為了對(duì)夏裝進(jìn)行合理定價(jià),在該地區(qū)的三家連鎖店各進(jìn)行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A店

B店

C店

售價(jià)x(元)

80

86

82

88

84

90

銷售量y(件)

88

78

85

75

82

66


(1)以三家連鎖店分別的平均售價(jià)和平均銷量為散點(diǎn),求出售價(jià)與銷量的回歸直線方程 ;
(2)在大量投入市場后,銷售量與單價(jià)仍然服從(1)中的關(guān)系,且該夏裝成本價(jià)為40元/件,為使該款夏裝在銷售上獲得最大利潤,該款夏裝的單價(jià)應(yīng)定為多少元(保留整數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三(三)班學(xué)生要安排畢業(yè)晚會(huì)的3個(gè)音樂節(jié)目,2個(gè)舞蹈節(jié)目和1個(gè)曲藝節(jié)目的演出順序,要求兩個(gè)舞蹈節(jié)目不連排,3個(gè)音樂節(jié)目恰有兩個(gè)節(jié)目連排,則不同排法的種數(shù)是(
A.240
B.188
C.432
D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)y=f(x)對(duì)任意的x、y∈R,滿足條件:f(x+y)=f(x)+f(y)﹣1,且當(dāng)x>0時(shí),f(x)>1.
(1)求f(0)的值;
(2)證明:函數(shù)f(x)是R上的單調(diào)增函數(shù);
(3)解關(guān)于t的不等式f(2t2﹣t)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a,b∈M. (Ⅰ)證明:| a+ b|< ;
(Ⅱ)比較|1﹣4ab|與2|a﹣b|的大。

查看答案和解析>>

同步練習(xí)冊答案