【題目】數(shù)學(xué)中有許多形狀優(yōu)美,寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個(gè)結(jié)論:
①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
②曲線C上存在到原點(diǎn)的距離超過的點(diǎn);
③曲線C所圍成的“心形”區(qū)域的面積小于3.其中所有正確結(jié)論的個(gè)數(shù)是( ).
A.0B.1C.2D.3
【答案】B
【解析】
將換成方程不變,所以圖形關(guān)于軸對(duì)稱,根據(jù)對(duì)稱性討論軸右邊的圖形即可.
將換成方程不變,所以圖形關(guān)于軸對(duì)稱,
當(dāng)時(shí),代入可得,,
即曲線經(jīng)過,;
當(dāng)時(shí),方程變?yōu)?/span>,
所以,解得,
所以只能取整數(shù),
當(dāng)時(shí),,解得或,即曲線經(jīng)過,,
根據(jù)對(duì)稱性可得曲線經(jīng)過,,
故曲線一共經(jīng)過6個(gè)整點(diǎn),故①正確;
當(dāng)時(shí),由可得
,(當(dāng)時(shí)取等號(hào)),
,,
即曲線C上軸右邊的點(diǎn)到原點(diǎn)的距離不超過,
根據(jù)對(duì)稱性可得:曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過,故②錯(cuò)誤;
在軸上圖形面積大于矩形面積,
在下方的面積大于等腰三角形的面積,
因此曲線C所圍成的“心形”區(qū)域的面積大于,故③錯(cuò)誤;
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新冠病毒疫情爆發(fā)期間,口罩成為了個(gè)人的必需品.已知某藥店有4種不同類型的口罩,,,,其中型口罩僅剩1只(其余3種庫存足夠).今甲、乙等5人先后在該藥店各購買了1只口罩,統(tǒng)計(jì)發(fā)現(xiàn)他們恰好購買了3種不同類型的口罩,則所有可能的購買方式共有( )
A.330種B.345種C.360種D.375種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于由正整數(shù)構(gòu)成的數(shù)列,若對(duì)任意,“且,也是中的項(xiàng),則稱為數(shù)列”.設(shè)數(shù)列|滿足,..
(1)請(qǐng)給出一個(gè)的通項(xiàng)公式,使得既是等差數(shù)列也是“數(shù)列”,并說明理由;
(2)根據(jù)你給出的通項(xiàng)公式,設(shè)的前項(xiàng)和為,求滿足的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù)).證明:
(1)存在唯一的極值點(diǎn);
(2)有且僅有兩個(gè)實(shí)根,且兩個(gè)實(shí)根互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,底面為梯形,,.
(1)平面;
(2)平面;
(3)是棱的中點(diǎn),棱上存在一點(diǎn),使.
正確命題的序號(hào)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos().
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)若直線l交曲線C于A,B兩點(diǎn),交x軸于點(diǎn)P,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).
(1)求拋物線的方程;
(2)設(shè),,為拋物線上的不同三點(diǎn),點(diǎn),且.求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國,大學(xué)生就業(yè)壓力日益嚴(yán)峻,伴隨著政府政策引導(dǎo)與社會(huì)觀念的轉(zhuǎn)變,大學(xué)生創(chuàng)業(yè)意識(shí),就業(yè)方向也悄然發(fā)生轉(zhuǎn)變某大學(xué)生在國家提供的稅收,擔(dān)保貸款等很多方面的政策扶持下選擇加盟某專營店自主
創(chuàng)業(yè),該專營店統(tǒng)計(jì)了近五年來創(chuàng)收利潤(rùn)數(shù)(單位:萬元)與時(shí)間(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
2.4 | 2.7 | 4.1 | 6.4 | 7.9 |
(Ⅰ)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(計(jì)算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合):
(Ⅱ)該專營店為吸引顧客,特推出兩種促銷方案.
方案一:每滿500元可減50元;
方案二:每滿500元可抽獎(jiǎng)一次,每次中獎(jiǎng)的概率都為,中獎(jiǎng)就可以獲得100元現(xiàn)金獎(jiǎng)勵(lì),假設(shè)顧客每次抽獎(jiǎng)的結(jié)果相互獨(dú)立.
①某位顧客購買了1050元的產(chǎn)品,該顧客選擇參加兩次抽獎(jiǎng),求該顧客獲得100元現(xiàn)金獎(jiǎng)勵(lì)的概率.
②某位顧客購買了1500元的產(chǎn)品,作為專營店老板,是希望該顧客直接選擇返回150元現(xiàn)金,還是選擇參加三次抽獎(jiǎng)?說明理由
附:相關(guān)系數(shù)公式
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有一塊矩形地塊,其中,,單位:百米.已知是一個(gè)游泳池,計(jì)劃在地塊內(nèi)修一條與池邊相切于點(diǎn)的直路(寬度不計(jì)),交線段于點(diǎn),交線段于點(diǎn).現(xiàn)以點(diǎn)為坐標(biāo)原點(diǎn),以線段所在直線為軸,建立平面直角坐標(biāo)系,若池邊滿足函數(shù)的圖象,若點(diǎn)到軸距離記為.
(1)當(dāng)時(shí),求直路所在的直線方程;
(2)當(dāng)為何值時(shí),地塊在直路不含泳池那側(cè)的面積取到最大,最大值時(shí)多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com