【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線(為參數(shù))與曲線相交于點,兩點.
(1)求曲線的平面直角坐標系方程和直線的普通方程;
(2)求的值.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)向量,,其中,則下列判斷錯誤的是( )
A.向量與軸正方向的夾角為定值(與、之值無關(guān))
B.的最大值為
C.與夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,,分別是橢圓短軸的上下兩個端點,是橢圓的左焦點,P是橢圓上異于點,的點,若的邊長為4的等邊三角形.
寫出橢圓的標準方程;
當直線的一個方向向量是時,求以為直徑的圓的標準方程;
設(shè)點R滿足:,,求證:與的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生對其親屬30人的飲食習慣進行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(1)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表;
(2)能否有99%的把握認為其親屬的飲食習慣與年齡有關(guān),并寫出簡要分析.
主食蔬菜 | 主食肉類 | 合計 | ||
50歲以下 | ||||
50歲以上 | ||||
合計 | ||||
參考公式:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解高三年級不同性別的學生對取消藝術(shù)課的態(tài)度(支持或反對),進行了如下的調(diào)查研究,全年級共有1350人,男女生比例為,現(xiàn)按分層抽樣方法抽取若干名學生,每人被抽到的概率均為,通過對被抽取學生的問卷調(diào)查,得到如下列聯(lián)表:
支持 | 反對 | 總計 | |
男生 | 30 | ||
女生 | 25 | ||
總計 |
(1)完成列聯(lián)表,并判斷能否有的把握認為態(tài)度與性別有關(guān)?
(2)若某班有6名男生被抽到,其中2人支持,4人反對;有4名女生被抽到,其中2人支持,2人反對,現(xiàn)從這10人中隨機抽取一男一女進一步調(diào)查原因.求其中恰有一人支持一人反對的概率.
參考公式及臨界值表:
0.10 | 0.050 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已如長方形 中, ,M為的中點,將 沿 折起,使得平面 平面,
(1)求證: ;
(2)若點 是線段 上的中點,求三棱錐與四棱錐的體積的比值 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,命題對任意,不等式成立;命題存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)若p且q為假,p或q為真,求m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com