【題目】已知,命題對(duì)任意,不等式成立;命題存在,使得成立.

1)若p為真命題,求m的取值范圍;

2)若pq為假,pq為真,求m的取值范圍;

【答案】12

【解析】

1)對(duì)任意,不等式恒成立,.利用函數(shù)的單調(diào)性與不等式的解法即可得出.

2)存在,使得成立,可得,命題為真時(shí),.由為假,為真,中一個(gè)是真命題,一個(gè)是假命題,再分別求出參數(shù)的取值范圍最后取并集即可.

解(1)∵對(duì)任意,不等式恒成立,

.解得

因此,若p為真命題時(shí),m的取值范圍是

2)存在,使得成立,∴,

命題q為真時(shí),

pq為假,pq為真,

p,q中一個(gè)是真命題,一個(gè)是假命題.

當(dāng)pq假時(shí),則解得;

當(dāng)pq真時(shí),,即

綜上所述,m的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過(guò)點(diǎn)的直線為參數(shù))與曲線相交于點(diǎn),兩點(diǎn).

(1)求曲線的平面直角坐標(biāo)系方程和直線的普通方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為(x-12+y-12=9,P22)是該圓內(nèi)一點(diǎn),過(guò)點(diǎn)P的最長(zhǎng)弦和最短弦分別為ACBD,則四邊形ABCD的面積是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值.由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4∶2∶1.

(1)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間[75,85]內(nèi)的概率;

(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,記這3件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間[45,75)內(nèi)的產(chǎn)品件數(shù)為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在區(qū)間上的函數(shù),.

(Ⅰ)證明:當(dāng)時(shí),;

(Ⅱ)若曲線過(guò)點(diǎn)的切線有兩條,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖一是美麗的勾股樹(shù),它是一個(gè)直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹(shù),重復(fù)圖二的作法,得到圖三為第2勾股樹(shù),以此類推,已知最大的正方形面積為1,則第勾股樹(shù)所有正方形的個(gè)數(shù)與面積的和分別為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù),其中.

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),,若存在,對(duì)任意的實(shí)數(shù),恒有成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年4月,甲乙兩校的學(xué)生參加了某考試機(jī)構(gòu)舉行的大聯(lián)考,現(xiàn)對(duì)這兩校參加考試的學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)統(tǒng)計(jì)顯示,考生的數(shù)學(xué)成績(jī)服從正態(tài)分布,從甲乙兩校100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:

(1)試通過(guò)莖葉圖比較這40份試卷的兩校學(xué)生數(shù)學(xué)成績(jī)的中位數(shù);

(2)若把數(shù)學(xué)成績(jī)不低于135分的記作數(shù)學(xué)成績(jī)優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有的把握認(rèn)為數(shù)學(xué)成績(jī)?cè)?00分及以上的學(xué)生中數(shù)學(xué)成績(jī)是否優(yōu)秀與所在學(xué)校有關(guān)?

(3)從所有參加此次聯(lián)考的學(xué)生中(人數(shù)很多)任意抽取3人,記數(shù)學(xué)成績(jī)?cè)?34分以上的人數(shù)為,求的數(shù)學(xué)期望.

附:若隨機(jī)變量服從正態(tài)分布,則,,

參考公式與臨界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案