已知命題p:2x2-x-1<0,那么p成立的一個必要不充分條件是( 。
A、0<x<1
B、-1<x<1
C、-
1
2
<x<1
D、-
1
2
<x<0
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:求解2x2-x-1<0,根據(jù)充分必要條件的定義可判斷.
解答: 解:∵2x2-x-1<0,
-
1
2
<x<1,
∵p:2x2-x-1<0,
∴p成立的一個必要不充分條件:-1<x<1,
故選:B
點評:本題考查了充分必要條件的定義,屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0且a≠1,f(logax)=
a
a2-1
(x-x-1).
(1)求f(x)的函數(shù)解析式,并求其定義域;
(2)判斷f(x)的奇偶性和單調(diào)性,并證明之;
(3)對于f(x),當(dāng)x∈(-2,2)時,f(2-m)+f(2-m2)<0,求m的值的集合.
(4)函數(shù)f(x)-3恰在(2,+∞)上取正值,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
ax+b
(a、b為常數(shù),且a≠0)滿足f(4)=
4
3
,方程f(x)=x有唯一解.
(1)求函數(shù)f(x)的解析式;
(2)求f(f(-3))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個圓錐的母線長為2,圓錐的軸截面的面積為
3
,則母線與軸的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式a2-4+4x-x2>0成立時,不等式|x2-4|<1成立,則正數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù)且|φ|<π;若f(x)≤|f(
π
6
)|對x∈R恒成立,且f(
π
2
)>f(π),求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
|x-2|
x≠2
1,x=2
,若關(guān)于x的方程:[f(x)]3+b[f(x)]2+c[f(x)]+d=0有且僅有3個不同的實根x1,x2,x3,則x12+x22+x32的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-1,1)上的奇函數(shù)f(x)在(0,1)上單調(diào)遞減,解不等式:f(x2-2)+f(3-2x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中國航母“遼寧艦”是中國第一艘航母,“遼寧”號以4臺蒸汽輪機為動力,為保證航母的動力安全性,科學(xué)家對蒸汽輪機進(jìn)行了技術(shù)改進(jìn),并增加了某項新技術(shù),該項新技術(shù)要進(jìn)入試用階段前必須對其中的三項不同指標(biāo)甲、乙、丙進(jìn)行量化檢測.假設(shè)該項新技術(shù)的指標(biāo)甲、乙、丙獨立通過檢測合格的概率分別為
3
4
2
3
、
1
2
,指標(biāo)甲、乙、丙合格分別記為4分、2分、4分,某項指標(biāo)不合格記為0分,各項指標(biāo)檢測結(jié)果互不影響.
(1)求該項技術(shù)量化得分不低于8分的概率;
(2)記該項新技術(shù)的三個指標(biāo)中被檢測合格的指標(biāo)個數(shù)為隨機變量X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案