【題目】已知某芯片所獲訂單(億件)與生產(chǎn)精度(納米)線性相關(guān),該芯片的合格率與生產(chǎn)精度(納米)也線性相關(guān),并由下表中的5組數(shù)據(jù)得到,滿足線性回歸方程為:

精度(納米)

16

14

10

7

3

訂單(億件)

7

9

12

14.5

17.5

合格率

0.99

0.98

0.95

0.93

1)求變量的線性回歸方程,并預(yù)測生產(chǎn)精度為1納米時該芯片的訂單(億件);

2)若某工廠生產(chǎn)該芯片的精度為3納米時,每件產(chǎn)品的合格率為,且各件產(chǎn)品是否合格相互獨立.該芯片生產(chǎn)后成盒包裝,每盒100件,每一盒產(chǎn)品在交付用戶之前要對產(chǎn)品做檢驗,如檢驗出不合格品,則更換為合格品.現(xiàn)對一盒產(chǎn)品檢驗了10件,結(jié)果恰有一件不合格,已知每件產(chǎn)品的檢驗費用為元,若有不合格品進(jìn)入用戶手中,則工廠要對每件不合格產(chǎn)品支付200元的賠償費用.若不對該盒余下的產(chǎn)品檢驗,這一盒產(chǎn)品的檢驗費用與賠償費用的和記為,以為決策依據(jù),判斷是否該對這盒余下的所有產(chǎn)品作檢驗?

(參考公式:,

(參考數(shù)據(jù):;

【答案】1,19.2億件;(2)分類討論,詳見解析.

【解析】

1)求出,,根據(jù)給定公式求解回歸方程并進(jìn)行預(yù)測估計;

2)根據(jù)回歸方程求出,令表示余下的90件產(chǎn)品中的不合格品件數(shù),依題意知,,分類討論得解.

1)由題知:, ,

所以,

所以,所以線性回歸方程:

所以估計生產(chǎn)精度為l納米時該芯片的訂單為(億件);

2)由題知:在回歸直線上,因為,所以,

所以,得 ,

表示余下的90件產(chǎn)品中的不合格品件數(shù),依題意知,,

因為,即

所以(元),

如果對余下的產(chǎn)品作檢驗,則這一箱產(chǎn)品所需要的檢驗費為

當(dāng),即,得

當(dāng),即,得

當(dāng),即,得

綜上:當(dāng)時,檢驗與不檢驗均可;

當(dāng)時,應(yīng)該不對剩余產(chǎn)品檢驗;

當(dāng)時,應(yīng)對剩余產(chǎn)品檢驗.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求a的值和函數(shù)f(x)的定義域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對數(shù)的底數(shù))

(1)求的值;

(2)若,且對任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為(其中為常數(shù)).

1)若曲線N與曲線M只有一個公共點,求的取值范圍;

2)當(dāng)時,求曲線M上的點與曲線N上的點之間的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,中點,將分別沿若、翻折,使得、兩點重合,則所形成的立體圖形的外接球的表面積是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù).

1)討論的單調(diào)性;

2)若上恒成立,求實數(shù)的取值范圍;

3)求證:對任意的正整數(shù)都有,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細(xì)胞作為主要攻擊目標(biāo),使人體喪失免疫功能下表是近八年來我國艾滋病病毒感染人數(shù)統(tǒng)計表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼x

1

2

3

4

5

6

7

8

感染者人數(shù)單位:萬人

85

請根據(jù)該統(tǒng)計表,畫出這八年我國艾滋病病毒感染人數(shù)的折線圖;

請用相關(guān)系數(shù)說明:能用線性回歸模型擬合yx的關(guān)系;

建立y關(guān)于x的回歸方程系數(shù)精確到,預(yù)測2019年我國艾滋病病毒感染人數(shù).

參考數(shù)據(jù):;,

參考公式:相關(guān)系數(shù),

回歸方程中, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)對設(shè)備進(jìn)行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,若該項指標(biāo)值落在[20,40)內(nèi)的產(chǎn)品視為合格品,否則為不合格品,圖1是設(shè)備改造前樣本的頻率分布直方圖,表1是設(shè)備改造后的頻數(shù)分布表.

表1,設(shè)備改造后樣本的頻數(shù)分布表:

質(zhì)量指標(biāo)值

頻數(shù)

2

18

48

14

16

2

(1)請估計該企業(yè)在設(shè)備改造前的產(chǎn)品質(zhì)量指標(biāo)的平均數(shù);

(2)企業(yè)將不合格品全部銷毀后,并對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在[25,30)內(nèi)的定為一等品,每件售價240元,質(zhì)量指標(biāo)值落在[20,25)[30,35)內(nèi)的定為二等品,每件售價180元,其它的合格品定為三等品,每件售價120.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率,現(xiàn)有一名顧客隨機(jī)購買兩件產(chǎn)品,設(shè)其支付的費用為X(單位:元),求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知平面,,.

(1) 求證:

(2) 求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案