【題目】隨著手機(jī)的普及,大學(xué)生迷戀手機(jī)的現(xiàn)象非常嚴(yán)重.為了調(diào)查雙休日大學(xué)生使用手機(jī)的時(shí)間,某機(jī)構(gòu)采用不記名方式隨機(jī)調(diào)查了使用手機(jī)時(shí)間不超過(guò)10小時(shí)的50名大學(xué)生,將50人使用手機(jī)的時(shí)間分成5組:,,,,分別加以統(tǒng)計(jì),得到下表,根據(jù)數(shù)據(jù)完成下列問(wèn)題:

使用時(shí)間/時(shí)

大學(xué)生/

5

10

15

12

8

1)完成頻率分布直方圖,并根據(jù)頻率分布直方圖估計(jì)大學(xué)生使用手機(jī)時(shí)間的中位數(shù)(保留小數(shù)點(diǎn)后兩位);

2)用分層抽樣的方法從使用手機(jī)時(shí)間在區(qū)間,的大學(xué)生中抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人取自不同使用時(shí)間區(qū)間的概率.

【答案】(1)頻率分布直方圖見(jiàn)解析,中位數(shù)約為5.33小時(shí);(2)

【解析】

1)根據(jù)題中數(shù)據(jù),完成頻率分布表,可完成頻率分布直方圖,設(shè)中位數(shù)為,則,可得中位數(shù);

2)分別求出從6人中隨機(jī)抽取2人總的事件數(shù)及2人取自不同使用時(shí)間區(qū)間的事件數(shù),由古典概型公式可得概率.

解:(1)根據(jù)題意,可將數(shù)據(jù)做如下整理:

使用時(shí)間/時(shí)

大學(xué)生/

5

10

15

12

8

頻率

0.1

0.2

0.3

0.24

0.16

頻率/組距

0.05

0.1

0.15

0.12

0.08

設(shè)中位數(shù)為,則,解得.

∴大學(xué)生每天使用手機(jī)時(shí)間的中位數(shù)約為5.33小時(shí).

2)用分層抽樣的方法從使用時(shí)間在區(qū)間,,中抽取的人數(shù)分別為1,2,3,分別設(shè)為,,,,,所有的基本事件為,,,,,,,,,,,這2名大學(xué)生取自同一時(shí)間區(qū)間的基本事件,,設(shè)這2名大學(xué)生取自不同使用時(shí)間區(qū)間為事件,符合條件的總事件數(shù)為15,在同一區(qū)間內(nèi)的情形有4種情況,∴

故這2名年輕人取自不同使用時(shí)間區(qū)間的概率為..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在棱長(zhǎng)為1的正方體中,點(diǎn)上移動(dòng),點(diǎn)上移動(dòng),,連接.

1)證明:對(duì)任意,總有平面;

2)當(dāng)為何值時(shí),的長(zhǎng)度最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:函數(shù),其中

)若的極值點(diǎn),求的值;

)求的單調(diào)區(qū)間;

)若上的最大值是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】代表紅球,代表藍(lán)球,代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由的展開(kāi)式表示出來(lái),如:“1”表示一個(gè)球都不取、“”表示取出一個(gè)紅球,而“”用表示把紅球和藍(lán)球都取出來(lái).以此類(lèi)推,下列各式中,其展開(kāi)式可用來(lái)表示從5個(gè)有區(qū)別的紅球、5個(gè)無(wú)區(qū)別的藍(lán)球、5個(gè)無(wú)區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,當(dāng)時(shí),.數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的通項(xiàng)公式;

3)若數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點(diǎn)分別是的中點(diǎn).

(1)證明:平面;

(2)設(shè),當(dāng)為何值時(shí),平面,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體中,為菱形,,平面,,,.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線的參數(shù)方程為為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線的參數(shù)方程為為參數(shù)),,且曲線與曲線的交點(diǎn)分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高一某班的元旦文藝晚會(huì)中,有這么一個(gè)游戲:一盒子內(nèi)裝有6張大小和形狀完全相同的卡片,每張卡片上寫(xiě)有一個(gè)成語(yǔ),它們分別為意氣風(fēng)發(fā)、風(fēng)平浪靜、心猿意馬、信馬由韁、氣壯山河、信口開(kāi)河,從盒內(nèi)隨機(jī)抽取2張卡片,若這2張卡片上的2個(gè)成語(yǔ)有相同的字就中獎(jiǎng),則該游戲的中獎(jiǎng)率為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案