【題目】已知數(shù)列的前項和為,,當時,.數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的通項公式;
(3)若數(shù)列的前項和為,求證:.
【答案】(1);(2);(3)證明見詳解.
【解析】
(1)根據(jù)的關(guān)系,即可容易求得.
(2)由遞推公式,進行下標的縮減,即可求得;
(3)利用等差數(shù)列和等比數(shù)列的前項和公式,求得,利用導數(shù)即可由函數(shù)單調(diào)性,進行證明.
(1)因為,
故當時,,
故可得;
又因為,,解得.
故數(shù)列是首項為,公比為的等比數(shù)列,
則.
(2)因為,①
故可得當時,
兩邊同乘以,
則②
①②可得:,則.
又當時,,故可得,
故.
(3)由(1)可知,數(shù)列是首項為,公比為的等比數(shù)列,
故可得;
又因為,故數(shù)列是首項為1,公差為的等差數(shù)列,
故可得,
又.
令,,
因為單調(diào)增函數(shù),且,
故存在,使得,
故當時單調(diào)遞減,當時單調(diào)遞增.
又因為,
故存在,使得,
故當時單調(diào)遞減,當時單調(diào)遞增.
又因為,
故可得,當時,
故當時,,
即.
故,即證.
科目:高中數(shù)學 來源: 題型:
【題目】某中學隨機選取了名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.
(Ⅰ)求的值及樣本中男生身高在(單位: )的人數(shù);
(Ⅱ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在和(單位: )內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),總存在實數(shù),使成立,則稱為關(guān)于參數(shù)的不動點.
(1)當,時,求關(guān)于參數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有關(guān)于參數(shù)兩個不動點,求的取值范圍;
(3)當,時,函數(shù)在上存在兩個關(guān)于參數(shù)的不動點,試求參數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)設(shè)每盤游戲獲得的分數(shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分數(shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 9 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,,求事件“”的概率;
(2)該小組發(fā)現(xiàn)種子的發(fā)芽數(shù)(顆)與晝夜溫差(℃)呈線性相關(guān)關(guān)系,試求:線性回歸方程.
(參考公式:線性回歸方程中系數(shù)計算公式,.其中,表示樣本均值.
參考數(shù)據(jù):;)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著手機的普及,大學生迷戀手機的現(xiàn)象非常嚴重.為了調(diào)查雙休日大學生使用手機的時間,某機構(gòu)采用不記名方式隨機調(diào)查了使用手機時間不超過10小時的50名大學生,將50人使用手機的時間分成5組:,,,,分別加以統(tǒng)計,得到下表,根據(jù)數(shù)據(jù)完成下列問題:
使用時間/時 | |||||
大學生/人 | 5 | 10 | 15 | 12 | 8 |
(1)完成頻率分布直方圖,并根據(jù)頻率分布直方圖估計大學生使用手機時間的中位數(shù)(保留小數(shù)點后兩位);
(2)用分層抽樣的方法從使用手機時間在區(qū)間,,的大學生中抽取6人,再從這6人中隨機抽取2人,求這2人取自不同使用時間區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某射擊運動員每次擊中目標的概率都是,現(xiàn)采用隨機模擬的方法估計該運動員射擊次至多擊中次的概率:先由計算器產(chǎn)生到之間取整數(shù)值的隨機數(shù),指定、表示沒有擊中目標,、、、、、、、表示擊中目標,因為射擊次,故以每個隨機數(shù)為一組,代表射擊次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下組隨機數(shù):
5727 0293 7140 9857 0347 4373 8636 9647 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 6710 4281
據(jù)此估計,射擊運動員射擊4次至多擊中3次的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《朗讀者》是一檔文化情感類節(jié)目,以個人成長、情感體驗、背景故事與傳世佳作相結(jié)合的方式,選用精美的文字,用最平實的情感讀出文字背后的價值,深受人們的喜愛.為了了解人們對該節(jié)目的喜愛程度,某調(diào)查機構(gòu)隨機調(diào)查了,兩個城市各100名觀眾,得到下面的列聯(lián)表.
非常喜愛 | 喜愛 | 合計 | |
城市 | 60 | 100 | |
城市 | 30 | ||
合計 | 200 |
完成上表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認為觀眾的喜愛程度與所處的城市有關(guān)?
附參考公式和數(shù)據(jù):(其中).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對任意實數(shù),都滿足,且,,當時,.
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)若,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com