【題目】《朗讀者》是一檔文化情感類(lèi)節(jié)目,以個(gè)人成長(zhǎng)、情感體驗(yàn)、背景故事與傳世佳作相結(jié)合的方式,選用精美的文字,用最平實(shí)的情感讀出文字背后的價(jià)值,深受人們的喜愛(ài).為了了解人們對(duì)該節(jié)目的喜愛(ài)程度,某調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了兩個(gè)城市各100名觀眾,得到下面的列聯(lián)表.

非常喜愛(ài)

喜愛(ài)

合計(jì)

城市

60

100

城市

30

合計(jì)

200

完成上表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為觀眾的喜愛(ài)程度與所處的城市有關(guān)?

附參考公式和數(shù)據(jù):(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】列表見(jiàn)解析,沒(méi)有的把握認(rèn)為觀眾的喜愛(ài)程度與所處的城市有關(guān)

【解析】

由題意填寫(xiě)列聯(lián)表,根據(jù)公式計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論即可.

完成列聯(lián)表如下

非常喜愛(ài)

喜愛(ài)

合計(jì)

城市

60

40

100

城市

70

30

100

合計(jì)

130

70

200

的觀測(cè)值

所以沒(méi)有的把握認(rèn)為觀眾的喜愛(ài)程度與所處的城市有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績(jī),從中抽取名學(xué)生的物理成績(jī)百分制作為樣本,按成績(jī)分成5組:,頻率分布直方圖如圖所示,成績(jī)落在中的人數(shù)為20

男生

女生

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

1的值;

2根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績(jī)的平均數(shù)和中位數(shù);

3成績(jī)?cè)?0分以上含80分為優(yōu)秀,樣本中成績(jī)落在中的男、女生人數(shù)比為1:2,成績(jī)落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認(rèn)為物理成績(jī)優(yōu)秀與性別有關(guān)

參考公式和數(shù)據(jù):

050

005

0025

0005

0455

3841

5024

7879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,當(dāng)時(shí),.數(shù)列滿足.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的通項(xiàng)公式;

3)若數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體中,為菱形,,平面,.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)從某學(xué)校高二年級(jí)男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成組:第,第,,第,下圖是按上述分組方法得到的頻率分布直方圖.

1)估計(jì)這名男生身高的中位數(shù)和平均數(shù);

2)求這名男生當(dāng)中身高不低于的人數(shù),若在這名身高不低于的男生中任意抽取人,求這人身高之差不大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線的參數(shù)方程為為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線的參數(shù)方程為為參數(shù)),,且曲線與曲線的交點(diǎn)分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:函數(shù)內(nèi)單調(diào)遞增或單調(diào)遞減;如果存在區(qū)間,使函數(shù)在區(qū)間上的值域?yàn)?/span>,那么稱,為閉函數(shù);

請(qǐng)解答以下問(wèn)題:

(1) 求閉函數(shù)符合條件的區(qū)間;

(2) 判斷函數(shù)是否為閉函數(shù)?并說(shuō)明理由;

(3)是閉函數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】p:關(guān)于x的方程無(wú)解,q

1)若時(shí),“”為真命題,“”為假命題,求實(shí)數(shù)a的取值范圍.

2)當(dāng)命題“若p,則q”為真命題,“若q,則p”為假命題時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案