【題目】經統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現采用隨機模擬的方法,先由計算機產生0到9之間取整數的隨機數,用0,1,2 沒有擊中,用3,4,5,6,7,8,9 表示擊中,以 4個隨機數為一組, 代表射擊4次的結果,經隨機模擬產生了20組隨機數:
7525,0293,7140,9857,0347,4373,8638,7815,1417,5550
0371,6233,2616,8045,6011,3661,9597,7424,7610,4281
根據以上數據,則可估計該運動員射擊4次恰好命中3次的概率為( )
A. B. C. D.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+3|x﹣a|(a∈R).
(1)若f(x)在[﹣1,1]上的最大值和最小值分別記為M(a),m(a),求M(a)﹣m(a);
(2)設b∈R,若[f(x)+b]2≤4對x∈[﹣1,1]恒成立,求3a+b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以A表示值域為R的函數組成的集合,B表示具有如下性質的函數φ(x)組成的集合:對于函數φ(x),存在一個正數M,使得函數φ(x)的值域包含于區(qū)間[﹣M,M].例如,當φ1(x)=x3 , φ2(x)=sinx時,φ1(x)∈A,φ2(x)∈B.現有如下命題:
①設函數f(x)的定義域為D,則“f(x)∈A”的充要條件是“b∈R,a∈D,f(a)=b”;
②函數f(x)∈B的充要條件是f(x)有最大值和最小值;
③若函數f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)+g(x)B.
④若函數f(x)=aln(x+2)+ (x>﹣2,a∈R)有最大值,則f(x)∈B.
其中的真命題有 . (寫出所有真命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線x=﹣3上任意一點,過F作TF的垂線交橢圓C于點P,Q.
①證明:OT平分線段PQ(其中O為坐標原點);
②當 最小時,求點T的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于直線l:ax+by+c=0和點P1(x1 , y1),P2(x2 , y2),記η=(ax1+by1+c)(ax2+by2+c),若η<0,則稱點P1 , P2被直線l分隔,若曲線C與直線l沒有公共點,且曲線C上存在點P1、P2被直線l分隔,則稱直線l為曲線C的一條分隔線.
(1)求證:點A(1,2),B(﹣1,0)被直線x+y﹣1=0分隔;
(2)若直線y=kx是曲線x2﹣4y2=1的分隔線,求實數k的取值范圍;
(3)動點M到點Q(0,2)的距離與到y(tǒng)軸的距離之積為1,設點M的軌跡為曲線E,求證:通過原點的直線中,有且僅有一條直線是E的分隔線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】狄利克雷函數是高等數學中的一個典型函數,若,則稱為狄利克雷函數.對于狄利克雷函數,給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設所選3人中女生人數為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com