【題目】已知直線l:和橢圓:相交于點(diǎn),
(1)當(dāng)直線l過橢圓的左焦點(diǎn)和上頂點(diǎn)時(shí),求直線l的方程
(2)點(diǎn)在上,若,求面積的最大值:
(3)如果原點(diǎn)O到直線l的距離是,證明:為直角三角形.
【答案】(1) (2) (3)證明見解析
【解析】
(1)由橢圓方程得左焦點(diǎn)和上頂點(diǎn)坐標(biāo),代入直線方程可得結(jié)果;
(2)聯(lián)立直線與橢圓方程可得的坐標(biāo),可得弦長,求出點(diǎn)到直線的距離。利用三角形面積公式可得面積,然后利用基本不等式可得最大值;
(3)利用原點(diǎn)O到直線l的距離是可得,聯(lián)立,利用韋達(dá)定理可得,,求出,利用可證結(jié)論.
(1)由知,,,所以,所以,
所以左焦點(diǎn)為,上頂點(diǎn)為,
所以,,所以直線l的方程為.
(2)聯(lián)立,可得或,
所以,,
所以,
又點(diǎn)到直線的距離,
所以三角形的面積
,
因?yàn)橐竺娣e的最大值,所以,
所以,
當(dāng)且僅當(dāng)時(shí),等號成立.
所以面積的最大值為.
(3)原點(diǎn)到直線的距離為,
所以,
聯(lián)立,消去并整理得,
由韋達(dá)定理得,,
所以,
所以
所以,所以為直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;
(2)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紋樣是中國傳統(tǒng)文化的重要組成部分,它既代表著中華民族的悠久歷史、社會的發(fā)展進(jìn)步,也是世界文化藝術(shù)寶庫中的巨大財(cái)富.小楠從小就對紋樣藝術(shù)有濃厚的興趣.收集了如下9枚紋樣微章,其中4枚鳳紋徽章,5枚龍紋微章.小楠從9枚徽章中任取3枚,則其中至少有一枚鳳紋徽章的概率為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y,z∈R,z(x+2y)=m.
(1)若m=1,求的最小值;
(2)若x2+2y2+3z2=m2﹣8,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年底,武漢發(fā)生“新型冠狀病毒”肺炎疫情,國家衛(wèi)健委緊急部署,從多省調(diào)派醫(yī)務(wù)工作者前去支援,正值農(nóng)歷春節(jié)舉家團(tuán)圓之際,他們成為“最美逆行者”.武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者疑似的新冠肺炎患者無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶不漏一人.若在排查期間,某小區(qū)有5人被確認(rèn)為“確診患者的密切接觸者”,現(xiàn)醫(yī)護(hù)人員要對這5人隨機(jī)進(jìn)行逐一“核糖核酸”檢測,只要出現(xiàn)一例陽性,則將該小區(qū)確定為“感染高危小區(qū)”.假設(shè)每人被確診的概率均為且相互獨(dú)立,若當(dāng)時(shí),至少檢測了4人該小區(qū)被確定為“感染高危小區(qū)”的概率取得最大值,則____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是( )
A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢
B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)
C.月日至月日新增確診人數(shù)波動(dòng)最大
D.我國新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中有16個(gè)格點(diǎn)(i,j),其中0≤i≤3,0≤j≤3.若在這16個(gè)點(diǎn)中任取n個(gè)點(diǎn),這n個(gè)點(diǎn)中總存在4個(gè)點(diǎn),這4個(gè)點(diǎn)是一個(gè)正方形的頂點(diǎn),求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知點(diǎn)到直線的距離為3.
(1)求實(shí)數(shù)的值;
(2)設(shè)是直線上的動(dòng)點(diǎn),在線段上,且滿足,求點(diǎn)軌跡方程,并指出軌跡是什么圖形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓的左、右焦點(diǎn)分別作傾斜角為的直線,且之間的距離為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓只有一個(gè)公共點(diǎn),求點(diǎn)到直線的距離之積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com