等邊三角形的邊長為3,點、分別是邊、上的點,且滿足 (如圖1).將△沿折起到△的位置,使二面角為直二面角,連結(jié) (如圖2).

(Ⅰ)求證:平面;

(Ⅱ)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長,若不存在,請說明理由.


 (1)因為等邊△的邊長為3,且,

所以,. 在△中,,

由余弦定理得. 因為,

所以.……………3分

折疊后有,因為二面角是直二面角,

所以平面平面  ,又平面平面,

平面,, 所以平面.………6分

(2)解法1:假設在線段上存在點,使直線與平面所成的角為

如圖,作于點,連結(jié) ,

由(1)有平面,而平面,

所以,又, 所以平面, 

所以是直線與平面所成的角  , ………………………8分

,則,,

中,,所以 ,

中,, ,

, 得  ,解得,滿足,符合題意 

所以在線段上存在點,使直線與平面所成的角為,此時  ………12分

解法2:由(1)的證明,可知,平面

為坐標原點,以射線、、分別為軸、軸、軸的正半軸,建立空間直角坐標系如圖 ,設, 則,, ,

所以,,,所以 ,

因為平面, 所以平面的一個法向量為 , ………………………9分

因為直線與平面所成的角為, 所以,

,  解得 ,

,滿足,符合題意,

所以在線段上存在點,使直線與平面所成的角為,此時 .………12分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:


一次考試中,要求考生從試卷上的9個題目中選6個進行答題,要求至少包含前5個題目中的3個,則考生答題的不同選法的種數(shù)是  ________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知,則的值為      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知函數(shù)的圖象(部分)如圖所示,則ω,φ分別為( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果S是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知函數(shù)

(1)若不等式的解集為,求實數(shù)a的值;

(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


各角的對應邊分別為,滿足  ,則角的范圍是

A.           B.           C.           D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


已知全集,集合,那么

(  )

A.  B.  C.    D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:


為了解大學生身體素質(zhì)情況,從某大學共800名男生中隨機抽取50人測量身高。 據(jù)測量,被測學生身高全部介于155cm到195cm之間,將測量結(jié)果按如下方式分成八組:第一組;第二組;…;第八組.如圖是按上述分組方法得到的頻率分布直方圖.

(1)估計這所學校高三年級全體男生身高在180cm以上 (含180cm)的人數(shù);

(2)若從身高屬于第六組和第八組的所有男生中隨機抽       

取兩人,記他們的身高分別為,求滿足“”的事件的概率.

 


查看答案和解析>>

同步練習冊答案