【題目】執(zhí)行所給的程序框圖,則輸出的值是(
A.
B.
C.
D.

【答案】C
【解析】解:模擬執(zhí)行程序,可得:

A=1,i=1,

第1次執(zhí)行循環(huán)體,A= ,i=2

滿足條件i≤20,第2次執(zhí)行循環(huán)體,A= ,i=3,

滿足條件i≤20,第3次執(zhí)行循環(huán)體,A= ,i=4,

滿足條件i≤20,第4次執(zhí)行循環(huán)體,A= ,i=5,

滿足條件i≤20,第5次執(zhí)行循環(huán)體,A= ,i=6,

觀察規(guī)律可知,當(dāng)i=20時(shí),滿足條件i≤20,第20次執(zhí)行循環(huán)體,A= = ,i=21,

此時(shí),不滿足條件i≤20,退出循環(huán),輸出A的值為

故選:C.

根據(jù)所給數(shù)值判定是否滿足判斷框中的條件,然后執(zhí)行循環(huán)語(yǔ)句,一旦滿足條件就退出循環(huán),輸出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖沖之之子祖暅?zhǔn)俏覈?guó)南北朝時(shí)代偉大的科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”.意思是,如果兩個(gè)等高的幾何體 在同高處截得的截面面積恒等,那么這兩個(gè)幾何體的體積相等.此即祖暅原理.利用這個(gè)原理求球的體積時(shí),需要構(gòu)造一個(gè)滿足條件的幾何體,已知該幾何體三視圖 如圖所示,用一個(gè)與該幾何體的下底面平行相距為 h(0<h<2) 的平面截該幾何體,則截面面積為 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) 的最大值為2,它的最小正周期為2π. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= 有最大值,則實(shí)數(shù)a的取值范圍是(
A.
B.
C.[﹣2,+∞)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的離心率為 ,M為C上除長(zhǎng)軸頂點(diǎn)外的一動(dòng)點(diǎn),以M為圓心, 為半徑作圓,過(guò)原點(diǎn)O作圓M的兩條切線,A、B為切點(diǎn),當(dāng)M為短軸頂點(diǎn)時(shí)∠AOB= . (Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的右焦點(diǎn)為F,過(guò)點(diǎn)F作MF的垂線交直線x= a于N點(diǎn),判斷直線MN與橢圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿足關(guān)系式y(tǒng)=axb(a,b為大于0的常數(shù)).現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

尺寸(mm)

38

48

58

68

78

88

質(zhì)量(g)

16.8

18.8

20.7

22.4

24.0

25.5

對(duì)數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計(jì)量的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程;
(Ⅱ)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間( )內(nèi)時(shí)為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機(jī)變量ξ的分布列和期望.
附:對(duì)于一組數(shù)據(jù)(v1 , u1),(v2 , u2),…,(vn , un),其回歸直線u=α+βv的斜率和截距的最小二乘估計(jì)分別為 = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=4an﹣1. (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=anan+1﹣2,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名籃球運(yùn)動(dòng)員在7場(chǎng)比賽中的得分情況如莖葉所示, 、 分別表示甲、乙兩人的平均得分,則下列判斷正確的是(
A. , 甲比乙得分穩(wěn)定
B. , 乙比甲得分穩(wěn)定
C. , 甲比乙得分穩(wěn)定
D. , 乙比甲得分穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在海岸線 一側(cè)有一休閑游樂(lè)場(chǎng),游樂(lè)場(chǎng)的前一部分邊界為曲線段 ,該曲線段是函數(shù) , 的圖像,圖像的最高點(diǎn)為 .邊界的中間部分為長(zhǎng)1千米的直線段 ,且 .游樂(lè)場(chǎng)的后一部分邊界是以 為圓心的一段圓弧

(1)求曲線段 的函數(shù)表達(dá)式;
(2)曲線段 上的入口 距海岸線 最近距離為1千米,現(xiàn)準(zhǔn)備從入口 修一條筆直的景觀路到 ,求景觀路 長(zhǎng);
(3)如圖,在扇形 區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū) ,平行四邊形的一邊在海岸線 上,一邊在半徑 上,另外一個(gè)頂點(diǎn)P在圓弧 上,且 ,求平行四邊形休閑區(qū) 面積的最大值及此時(shí) 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案