【題目】在四面體中,已知,.

1)當四面體體積最大時,求的值;

2)當時,設四面體的外接球球心為,求和平面所成夾角的正弦值.

【答案】1;(2.

【解析】

1)取中點,連接,,過點,由題意可知當平面時,四面體的面積最大,求出此時的的值即可得解;

2)在線段上取,使,的內心,過平面,則球心在直線上,設,球的半徑為,由勾股定理求得后,由即可得解.

1)取中點,連接,,過點,

可得,,

可得平面

平面,所以平面平面,所以平面,

即為四面體的高,由,可知當平面四面體面積最大,

此時的值為;

2)當時,,則的中點,

所以,,

在線段上取,使,易知的內心,,

平面,則球心在直線上,

球心為,過點,連接,則

,球的半徑為,則,

,

所以,解得

所以,,

和平面所成夾角為,

平面可知

所以和平面所成夾角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),的參數(shù)方程為:為參數(shù)).

1)化、的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

2)若直線的極坐標方程為:,曲線上的點對應的參數(shù),曲線上的點對應的參數(shù),求的中點到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調遞增,求實數(shù)的取值范圍;

(2)若函數(shù)有兩個不同的零點.

(。┣髮崝(shù)的取值范圍;

(ⅱ)求證:.(其中的極小值點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體的棱長為1,P是空間中任意一點,下列正確命題的個數(shù)是(

①若P為棱中點,則異面直線APCD所成角的正切值為;

②若P在線段上運動,則的最小值為

③若P在半圓弧CD上運動,當三棱錐的體積最大時,三棱錐外接球的表面積為;

④若過點P的平面與正方體每條棱所成角相等,則截此正方體所得截面面積的最大值為

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行四邊形中,,,EA的中點(如圖1),將沿CD折起到圖2的位置,得到四棱錐是

1)求證:平面PDA

2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了政府對過熱的房地產(chǎn)市場進行調控決策,統(tǒng)計部門對城市人和農(nóng)村人進行了買房的心理預期調研,用簡單隨機抽樣的方法抽取110人進行統(tǒng)計,得到如下列聯(lián)表:

買房

不買房

糾結

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.

分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結人數(shù);

用獨立性檢驗的思想方法說明在這三種買房的心理預期中哪一種與城鄉(xiāng)有關?

參考公式:

k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為為常數(shù))對于任意的恒成立.

1)若,求的值;

2)證明:數(shù)列是等差數(shù)列;

3)若,關于的不等式有且僅有兩個不同的整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,分別在軸,軸上運動,,點在線段上,且.

1)求點的軌跡的方程;

2)直線交于,兩點,,若直線,的斜率之和為2,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標系中,點的橫坐標大于點的橫坐標,求點的直角坐標.

查看答案和解析>>

同步練習冊答案