【題目】已知點(diǎn),分別在軸,軸上運(yùn)動(dòng),,點(diǎn)在線段上,且.

1)求點(diǎn)的軌跡的方程;

2)直線交于,兩點(diǎn),,若直線,的斜率之和為2,直線是否恒過定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

【答案】12)直線恒過定點(diǎn)

【解析】

1)設(shè),由此得出兩點(diǎn)的坐標(biāo),根據(jù)列方程,化簡(jiǎn)后求得點(diǎn)的軌跡方程.

2)設(shè),,當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,聯(lián)立直線方程和軌跡的方程,寫出判別式和韋達(dá)定理,根據(jù)直線,的斜率之和為2列方程,求得的關(guān)系式,由此判斷直線過點(diǎn).當(dāng)直線斜率不存在時(shí),同樣利用直線,的斜率之和為2列方程,由此求得直線的方程,此時(shí)直線也過點(diǎn),由此判斷出直線恒過定點(diǎn).

1)設(shè)

因?yàn)辄c(diǎn)在線段上,且,所以,,

因?yàn)?/span>,所以,即,

所以點(diǎn)的軌跡的方程為.

2)設(shè),

當(dāng)的斜率存在時(shí),設(shè),

,

所以,即

,,

因?yàn)橹本,的斜率之和為2,所以,

所以,即,所以,

當(dāng)時(shí),滿足,即,符合題意,

此時(shí)恒過定點(diǎn)

當(dāng)的斜率不存在時(shí),,

因?yàn)橹本,的斜率之和為2,所以,

所以,此時(shí),恒過定點(diǎn),

綜上,直線恒過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若,直線與曲線和曲線都相切,切點(diǎn)分別為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體中,已知,.

1)當(dāng)四面體體積最大時(shí),求的值;

2)當(dāng)時(shí),設(shè)四面體的外接球球心為,求和平面所成夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐ABCD中,點(diǎn)EBD上,EAEBECEDBDCD,△ACD為正三角形,點(diǎn)M,N分別在AECD上運(yùn)動(dòng)(不含端點(diǎn)),且AMCN,則當(dāng)四面體CEMN的體積取得最大值時(shí),三棱錐ABCD的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對(duì)部分企業(yè)的稅收進(jìn)行適當(dāng)?shù)臏p免,某機(jī)構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個(gè)結(jié)論:

樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;

如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計(jì)有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

樣本的中位數(shù)為480萬元.

其中正確結(jié)論的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長(zhǎng)為2的等邊中,分別為邊的中點(diǎn),將AED沿折起,使得 , ,得到如圖2的四棱錐A-BCDE,連結(jié),且交于點(diǎn)

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①“”是“”的充分不必要條件;②命題“,”的否定是“,”;③小趙、小錢、小孫、小李到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件為“4個(gè)人去的景點(diǎn)不相同”,事件為“小趙獨(dú)自去一個(gè)景點(diǎn)”,則;④設(shè),其正態(tài)分布密度曲線如圖所示,那么向正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)的個(gè)數(shù)的估計(jì)值是6587.(注:若,則,)其中正確說法的個(gè)數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),C的準(zhǔn)線與E交于PQ兩點(diǎn),且

1)求E的方程;

2)過E的左頂點(diǎn)A作直線lE于另一點(diǎn)B,且BOO為坐標(biāo)原點(diǎn))的延長(zhǎng)線交E于點(diǎn)M,若直線AM的斜率為1,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=exx+12,令f1x)=f'(x),fn+1x)=fn'(x),若fnx)=exanx2+bnx+cn),記數(shù)列{}的前n項(xiàng)和為Sn,則下列選項(xiàng)中與S2019的值最接近的是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案